Дисковые устройства и системы хранения данных. Системы хранения данных - краткий обзор. Типы носителей информации и протокол взаимодействия с СХД

Компания Тринити является одним из лидеров ИТ-рынка среди поставщиков систем хранения данных (СХД) в России. За свою более 25-летнюю историю, являясь официальным поставщиком и партнером известных брендов СХД, мы поставили своим заказчиком несколько сотен систем хранения данных, различного назначения, таких вендоров (производителей) оборудования, как: IBM, Dell EMC, NetApp, Lenovo, Fujitsu, HP, Hitachi, Oracle (Sun Microsystems), Huawei, RADIX, Infortrend. Некоторые системы хранения данных содержали более 1000 жестких дисков и имели емкость более петабайта.

Сегодня мы являемся мультивендорным системным интегратором и занимаемся проектированием и построением ИТ-инфраструктуры предприятий, поставляя и внедряя у наших заказчиков, не только системы хранения данных известных марок, но и серверное и сетевое оборудование, инженерную инфраструктуру, средства обеспечения информационной безопасности, а также управления и мониторинга. Комплексный подход компании Тринити обеспечивается глубокой экспертизой наших инженеров и многолетними партнерскими отношениями с производителями аппаратного и программного обеспечения. Сегодня мы можем предложить комплексные ИТ-решения для бизнеса любого масштаба и задач любой сложности.

Мы оказываем большой спектр БЕСПЛАТНЫХ услуг , которыми сопровождаем возможные активности во взаимоотношениях с нашими потенциальными заказчиками ИТ-оборудования и решений. Мы готовы БЕСПЛАТНО проработать и подготовить решение ИТ-задачи в части анализа всех возможных вариантов, выбора оптимального, расчет архитектуры решения, составление всех спецификаций оборудования и ПО, а также развертывание этого решения в инфраструктуре заказчика.

Системный подход для комплексного решение ИТ-задач заказчика или поставка отдельных ИТ-составляющих решения предполагает глубокое консультирование экспертов «Тринити» для выбора единственно правильного и оптимального решения.

Компания Тринити является официальным партнером ведущих производителей СХД оборудования и программного обеспечения, подтвержденного самыми высокими статусами уровня Premier (Премьер), GOLD (Золотой), PLATINUM (Платиновый) и получением специальных наград, которыми вендоры отмечают своих партнеров за достижения в уровне экспертизы и внедрении сложных информационных технологий в отрасли производства, торговли и государственного управления.

Мы предлагаем не только купить оборудование для хранения данных ведущих международных брендов (производителей), таких как Dell EMC, Lenovo, NetApp, Fujitsu, HP (HPe), Hitachi, Cisco, IBM, Huawei, но и готовы выполнить для вас весь спектр ИТ-задач по подбору оборудования, консультированию, составлению спецификаций, пилотному тестированию в нашей лаборатории или на вашей площадке, настройке, инсталляции и оптимизации инфраструктуры именно под ваши задачи и конкретные приложения. Также мы готовы предоставить специальные цены на поставляемые системы хранения данных и сопутствующее оборудование и ПО, а также оказать квалифицированную техническую поддержку и сервисное обслуживание.

Мы всегда готовы помочь разработать техническое задание и спецификацию систем хранения данных (СХД) и серверного оборудования для конкретных задач, сервисов и приложений, подобрать финансовые условия (рассрочка, лизинг), осуществить доставку и монтаж оборудования на площадке заказчика и последующий запуск в работу с консультированием и обучением ИТ-сотрудников клиента.

Подбор оптимальной конфигурации оборудования для хранения и обработки данных

Мы готовы предложить Вам системы хранения данных оптимальной комплектации. В своем портфеле решений, мы имеем различные системы хранения данных: cистемы Класса All-Flash (флэш), Гибридные СХД на твердотельных Флэш-накопителях, SSD, NVMe, SAS, SATA с различными вариантами подключения к хостам, как файловых сред (сетевая файловая система NFS и SMB), так и блочных СХД (Fibre Channel и iSCSI), а также готовы произвести расчет гиперконвергентных систем (HCI). Вы можете сформулировать ваши задачи или пожелания к составу СХД, требования к производительности (IOPs - операций ввода-вывода в секунду), требований к времени доступа (Latency, задержка в мили- или микросекундах), емкости хранения (гигабайт, терабайт, петабайт), физическим размерам и потребляемой энергии, а также к серверам и ПО (операционные системы, гипервизоры и прикладные приложения). Мы готовы проконсультировать Вас по телефону или по почте и готовы предложить провести вам полный или частичный аудит ресурсов и сервисов хранения ИТ-инфраструктуры вашей компании, для глубокого понимания ваших задач, требований и возможностей для оптимального подбора ИТ-решения (СХД) или выполнения комплексного проекта, результаты которого будут работать на ваш бизнес долгие годы, имея возможность наращивания мощности и емкости хранения с ростом требований, вашей специфики и задач развития. Вы сможете подобрать (получить спецификации и цены), произвести пилотное тестирование систем хранения данных в своей инфраструктуре, получить все необходимые консультации и в последующем купить системы хранения данных и другое сопутствующее оборудование и ПО, получив моновендорное или мультивендорное решение, а наши специалисты выполнят весь комплекс поставки и работ от вашего первого контакта с нами, до подписания актов выполненных работ и оказания сервисного обслуживания.

Кроме готовых и настроенных систем хранения данных, компания Тринити предлагает большой спектр серверного оборудования и сетевой инфраструктуры, которые интегрируются в ИТ инфраструктуру заказчика для комплексного решения задач хранения и обработки данных. Практически любой обзор систем хранения данных, который можно найти на тематических сайтах и форумах, обязательно будет включать в себя информацию наших многолетних партнеров IBM, Dell EMC, NetApp, Lenovo, Fujitsu, HP, Hitachi, Cisco и Huawei. Все это оборудование для хранения данных Вы можете купить и настроить в нашей компании быстро и выгодно.

Сайзинг и подбор спецификации систем хранения данных под задачи Вашей компании

У нас на складе есть как готовые, наиболее востребованные системы хранения данных, так и все возможности для быстрой и точной проработки технического задания для разработки конфигураций СХД под нужды конкретной компании. Наши системы способны работать в круглосуточном режиме: 24 часа в день, 7 дней в неделю, 365 дней в году без сбоев и ошибок. Такой статистики мы добиваемся высоким качеством поставляемых решений и жестким тестированием всех узлов и компонентов систем хранения перед отгрузкой нашим заказчикам. Применение RAID технологий, средств отказоустойчивости, кластеризации и решений защиты от катастроф (Disaster Recovery), как на аппаратном уровне, так и на уровне операционных систем, контроллеров, гипервизоров и развернутых сервисов, гарантируют целостность и доступность обрабатываемой и хранимой информации на системах хранения данных, так и на резервных копиях. Вы можете купить просто системы хранения данных в нашей компании или пригласить нас для участия в комлексном ИТ-проекте, в котором оборудование хранения данных является одной из составляющих ИТ-инфраструктуры предприятия.

Собственная разработка системы хранения данных

Компания Тринити разработала и поставляет систему хранения данных (СХД) на российский рынок под собственной торговой маркой "FlexApp". В основе этой системы хранения данных лежит программное обеспечение (ПО) компании RAIDIX. Линейка оборудования СХД отечественного производства Тринити включает в себя, как высокопроизводительные системы хранения данных на базе флеш-накопителей (All-Flash), так и емкие СХД с использованием множества самых емких жестких дисков по 16ТБ (терабайт) в каждой полке с возможностью объединять эти полки в пулы достигая общей емкости в сотни петабайт. Разработанная нами система хранения данных FlexApp может являться основой оборудования хранения данных для выполнения операторами связи требований «закона Яровой».

Как можно купить систему хранения данных в нашей компании?

Для того, чтобы рассчитать и купить систему хранения данных в нашей компании, необходимо отправить запрос по почте на интересующую Вас модель или описать ваши требования к составу такой модели. Также вы можете позвонить по нашим телефонам в рабочие часы. Мы будем рады обсудить с Вами задачи и требования к системам хранения данных, их производительности, уровню отказоустойчивости. Мы готовы предоставить полную и бесплатную экспертную консультацию по комплектации и техническим особенностям любых систем хранения данных, производства наших партнеров: Dell EMC, Lenovo, NetApp, Fujitsu, HP (HPe), Hitachi, Cisco, IBM, Huawei для оптимального подбора необходимого решения.

Наши офисы с инженерами и экспертами расположены в трех регионах страны:

  • Центральный ФО, Москва;
  • Северо-Западный ФО, Санкт-Петербург;
  • Уральский ФО, Екатеринбург.

Мы всегда готовы видеть Вас и приглашаем посетить офисы Тринити для обсуждения решения поставленных ИТ-задач с нашими менеджерами, экспертами, инженерами и руководством компании. При необходимости мы готовы организовать встречи заказчиков с представителями вендоров (производителей) и поставщиков. Также наши сотрудники готовы приехать на вашу площадку для знакомства и детальной проработки ИТ-инфраструктуры и функционирования ИТ-сервисов.

Как известно, в последнее время наблюдается интенсивное увеличение объемов накапливаемой информации и данных. Исследование, проведенное IDC «Цифровая вселенная», продемонстрировало, что мировой объем цифровой информации к 2020 г. способен увеличиться с 4,4 зеттебайт до 44 зеттебайт. По словам экспертов, каждые два года объем цифровой информации удваивается. Поэтому сегодня чрезвычайно актуальной является проблема не только обработки информации, но также и ее хранения.

Для решения данного вопроса в настоящее время наблюдается весьма активное развитие такого направления, как развитие СХД (сетей/систем хранения данных). Попробуем разобраться, что именно современная ИТ-индустрия подразумевает под понятием «система хранения данных».

СХД – это программно-аппаратное комплексное решение, направленное на организацию надежного и качественного хранения различных информационных ресурсов, а также предоставления бесперебойного доступа к этим ресурсам.

Создание подобного комплекса должно помочь в решении самых разных задач, встающих перед современным бизнесом в ходе построения цельной информационной системы.

Основные компоненты СХД :

Устройства хранения (ленточная библиотека, внутренний либо внешний дисковый массив);

Система мониторинга и управления;

Подсистема резервного копирования/ архивирования данных;

Программное обеспечение управления хранением;

Инфраструктура доступа ко всем устройствам хранения.

Основные задачи

Рассмотрим наиболее типичные задачи:

Децентрализация информации. Некоторые организации обладают развитой филиальной структурой. Каждое отдельное подразделение такой организации должно обладать свободным доступом ко всей информации, необходимой ему для работы. Современные СХД взаимодействуют с пользователями, которые находится на большом расстоянии от центра, где выполняется обработка данных, поэтому способны решить эту задачу.

Невозможность предусмотреть конечные требуемые ресурсы. Во время планирования проекта определить, с каким именно объемами информации придется работать во время эксплуатации системы, бывает крайне сложно. Кроме этого, постоянно увеличивается масса накапливаемых данных. Большинство современных СХД обладает поддержкой масштабируемости (способности наращивать свою производительность после добавления ресурсов), поэтому мощность системы можно будет увеличивать пропорционально возрастанию нагрузок (производить апгрейд).

Безопасность всей хранимой информации. Проконтролировать, а также ограничить доступ к информационным ресурсам предприятия бывает довольно сложно. Неквалифицированные действия обслуживающего персонала и пользователей, умышленные попытки вредительства – все это способно нанести хранящимся данным значительный вред. Современные СХД используют различные схемы отказоустойчивости, позволяющие противостоять как умышленным диверсиям, так и неумелым действиям неквалифицированных сотрудников, сохранив тем самым работоспособность системы.

Сложность управления распределенными информационными потоками – любое действие, направленное на изменение распределенных информационных данных в одном из филиалов, неизбежно создает ряд проблем – от сложности синхронизации разных баз данных и версий файлов разработчиков до ненужного дублирования информации. Программные продукты управления, поставляемые вместе с СХД , помогут вам оптимально упростить и эффективно оптимизировать работу с хранимой информацией.

Высокие расходы. Как показали результаты проведенного IDC Perspectives исследования, расходы на хранение данных составляют порядка двадцати трех процентов от всех расходов на IT. Эти расходы включают стоимость программной и аппаратной частей комплекса, выплаты обслуживающему персоналу и пр. Использование СХД позволяет сэкономить на администрировании системы, а также обеспечивает снижение расходов на персонал.


Основные типы СХД

Все системы хранения данных подразделяются на 2 типа: ленточные и дисковые СХД . Каждый из двух вышеупомянутых видов делится, в свою очередь, на несколько подвидов.

Дисковые СХД

Такие системы хранения данных используются для создания резервных промежуточных копий, а также оперативной работы с различными данными.

Дисковые СХД подразделяются на следующие подвиды:

Устройства для резервных копий (различные дисковые библиотеки);

Устройства для рабочих данных (оборудование, характеризующееся высокой производительностью);

Устройства, используемые для длительного хранения архивов.


Ленточные СХД

Используются для создания архивов, а также резервных копий.

Ленточные СХД подразделяются на следующие подвиды:

Ленточные библиотеки (два либо более накопителей, большое количество слотов для лент);

Автозагрузчики (1 накопитель, несколько слотов, предназначенных для лент);

Отдельные накопители.

Основные интерфейсы подключения

Выше мы рассмотрели основные типы систем, а теперь давайте разберемся подробнее со структурой самих СХД . Современные системы хранения данных подразделяются в соответствии с типом используемых ими интерфейсов подключения хостов. Рассмотрим ниже 2 наиболее распространенных внешних интерфейса подключения - SCSI и FibreChannel. Интерфейс SCSI напоминает широко распространенный IDE и представляет собой параллельный интерфейс, который допускает размещение на одной шине от шестнадцати устройств (для IDE, как известно, два устройства на канал). Максимальная скорость SCSI протокола сегодня составляет 320 мегабайт в секунду (версия, которая будет обеспечивать скорость в 640 мегабайт в секунду, сегодня находится в разработке). Недостатки SCSI следующие – неудобные, не обладающие помехозащищенностью, слишком толстые кабели, максимальная длина которых не превышает двадцати пяти метров. Сам протокол SCSI тоже накладывает определенные ограничения – как правило, это 1 инициатор на шине плюс ведомые устройства (стримеры, диски и пр.).

Интерфейс FibreChannel используется реже, чем интерфейс SCSI, так как оборудование, используемое для данного интерфейса, стоит дороже. Кроме этого, FibreChannel используется для развертывания крупных SAN сетей хранения данных, поэтому используется он только в крупных компаниях. Расстояния могут быть, практически, любыми – от стандартных трехсот метров на типовом оборудовании до двух тысяч километров для мощных коммутаторов («директоров»). Основным преимуществом интерфейса FibreChannel является возможность объединить многие устройства хранения и хосты (сервера) в общую SAN сеть хранения данных. Менее важными преимуществами являются: большие, чем со SCSI, расстояния, возможность агрегирования каналов и резервирования путей доступа, возможность «горячего подключения» оборудования, более высокая помехозащищенность. Используются двухжильные одно- и многомодовые оптические кабели (с коннекторами типа SC либо LC), а также SFP – оптические трансмиттеры, изготавливаемые на основе лазерных либо светодиодных излучателей (от этих компонентов зависит максимальное расстояние между используемыми устройствами, а также скорость передачи).

Варианты топологий СХД

Традиционно СХД используется для подключения серверов к DAS – системе хранения данных. Кроме DAS существуют еще и NAS – устройства хранения данных, которые подключаются к сети, а также SAN – составляющие сетей хранения данных. SAN и NAS системы были созданы как альтернатива архитектуре DAS. При этом каждое из вышеупомянутых решений разрабатывалось в качестве ответа на постоянно увеличивающиеся требования к современным системам хранения данных и основывалось на применении доступных на тот момент технологий.

Архитектуры первых сетевых систем хранения разработаны были в 1990-х годах для устранения наиболее ощутимых недостатков DAS систем. Сетевые решения в сфере систем хранения были предназначены для реализации вышеперечисленных задач: снижения затрат и сложности управления данными, уменьшения трафика локальных сетей, повышения общей производительности и степени готовности данных. При этом архитектуры SAN и NAS решают разные аспекты одной общей проблемы. В результате одновременно стали существовать 2 сетевые архитектуры. Каждая из них обладает собственными функциональными возможностями и преимуществами.

DAS


(D irect A ttached S torage) – это архитектурное решение, используемое в случаях, когда устройство, применяемое для хранения цифровых данных, подключено по протоколу SAS через интерфейс непосредственно к серверу либо к рабочей станции.


Основные преимущества DAS систем: невысокая, сравнительно с остальными решениями СХД, стоимость, простота развертывания, а также администрирования, высокоскоростной обмен данными между сервером и системой хранения.

Вышеперечисленные преимущества позволили DAS системам стать чрезвычайно популярными в сегменте небольших корпоративных сетей, хостинг-провайдеров и малых офисов. Но при этом у DAS-систем имеются и свои недостатки, например, не оптимальная утилизация ресурсов, объясняемая тем, что для каждой DAS-системы требуется подключение выделенного сервера, кроме этого, каждая такая система позволяет подключить к дисковой полке не больше двух серверов в определенной конфигурации.

Преимущества:

Доступная стоимость. СХД представляет собой по сути установленную за пределами сервера дисковую корзину, снабженную жесткими дисками.

Обеспечение высокоскоростного обмена между сервером и дисковым массивом.


Недостатки:

Недостаточная надежность – в случае аварии либо возникновения в сети каких-либо проблем сервера перестают быть доступными ряду пользователей.

Высокая латентность, возникающая из-за того, что все запросы обрабатываются одним сервером.

Низкая управляемость – доступность всей емкости одному серверу уменьшает гибкость распределения данных.

Низкая утилизация ресурсов – требуемые объемы данных предсказать сложно: одни устройства DAS в организации могут испытывать избыток емкости, а другим может ее не хватать, поскольку перераспределение емкости обычно бывает слишком трудоемким либо вовсе невозможным.

NAS


(N etwork A ttached S torage) – это интегрированная отдельно стоящая дисковая система, включающая в себя NAS сервер с собственной специализированной операционной системой и набором полезных для пользователей функций, обеспечивающих быстрый запуск системы, а также доступ к любым файлам. Подключается система к обыкновенной компьютерной сети, позволяя пользователям данной сети решить проблему недостатка свободного дискового пространства.

NAS - хранилище, которое подключается к сети как обычное сетевое устройство, обеспечивая файловый доступ к цифровым данным. Любое устройство NAS представляет собой комбинацию системы хранения данных и сервера, к которому подключена эта система. Простейшим вариантом NAS устройства является сетевой сервер, который предоставляет файловые ресурсы.

Состоят NAS устройства из головного устройства, которое выполняет обработку данных, а также соединяет цепочку дисков в единую сеть. NAS обеспечивают использование систем хранения данных в сетях Ethernet. Совместный доступ к файлам организуется в них при помощи протокола TCP/IP. Подобные устройства обеспечивают совместное использование файлов даже теми клиентами, системы которых функционируют под управлением разных операционных систем. В отличие от DAS архитектуры, в NAS системах сервера для повышения общей емкости в автономный режим можно не переводить; добавлять диски в структуру NAS можно посредством простого подключения устройства в сеть.

NAS технология развивается сегодня в качестве альтернативы универсальным серверам, несущим в себе большое количество различных функций (электронная почта, факс сервер, приложения, печать и пр.). NAS-устройства, в отличие от универсальных серверов, выполняют всего одну функцию – файлового сервера, стараясь делать это максимально быстро, просто и качественно.

Подключение NAS к ЛВС обеспечивает доступ к цифровой информации неограниченному числу гетерогенных клиентов (то есть клиентов с разными операционными системами) либо другим серверам. Сегодня практически все устройства NAS используются в сетях Ethernet на основе TCP/IP протоколов. Доступ к NAS устройствам осуществляется посредством использования специальных протоколов доступа. Самые распространенные протоколы файлового доступа – DAFS, NFS, CIFS. Внутри таких серверов устанавливаются специализированные операционные системы.

NAS-устройство может выглядеть как обычная «коробочка», снабженная одним портом Ethernet, а также парой жестких дисков, а может представлять собой огромную систему, снабженную несколькими специализированными серверами, огромным количеством дисков, а также внешних Ethernet-портов. Иногда устройства NAS представляют собой часть SAN-сети. В этом случае они собственных накопителей не имеют, а лишь предоставляют доступ к тем данным, которые располагаются на блочных устройствах. В данном случае NAS выступает как мощный специализированный сервер, а SAN – как устройство хранения данных. Из SAN и NAS компонентов в данном случае формируется единая DAS топология.

Преимущества

Невысокая стоимость, доступность ресурсов для отдельных серверов, а также для любого компьютера организации.

Универсальность (один сервер способен обслуживать клиентов Unix, Novell, MS, Mac).

Простота развертывания, а также администрирования.

Простота совместного использования ресурсов.


Недостатки

Доступ к информации посредством протоколов сетевых файловых систем часто бывает более медленным, чем доступ к локальному диску.

Большая часть доступных по цене NAS-серверов не в состоянии обеспечивать гибкий, скоростной метод доступа, который обеспечивается современными SAN системами (на уровне блоков, а не файлов).

SAN


(S torage A rea N etwork) - это архитектурное решение позволяет подключать к серверам внешние устройства хранения данных (ленточные библиотеки, дисковые массивы, оптические накопители и пр.). При таком подключении внешние устройства распознаются операционной системой как локальные. Использование SAN сети позволяет снизить совокупную стоимость содержания системы хранения данных и позволяет современным организациям организовать надежное хранение своей информации.

Простейший вариант SAN – это СХД , сервера и коммутаторы, объединенные оптическими каналами связи. Кроме дисковых систем хранения данных, в SAN могут быть подключены дисковые библиотеки, стримеры (ленточные библиотеки), устройства, используемые для хранения информации на оптических дисках и пр.

Преимущества

Надежностью доступа к тем данным, которые находятся на внешних системах.

Независимость SAN топологии от используемых серверов и систем хранения данных.

Безопасность и надежность централизованного хранения данных.

Удобство централизованного управления данными и коммутацией.

Возможность перенести в отдельную сеть трафика ввода-вывода, обеспечивающая разгрузку LAN.

Низкая латентность и высокое быстродействие.

Гибкость и масштабируемость логической структуры SAN.

Фактическая неограниченность географических размеров SAN.

Возможность оперативного распределения ресурсов между серверами.

Простота схемы резервного копирования, обеспечиваемая тем, что все данные располагаются в одном месте.

Возможность создания отказоустойчивых кластерных решений на основе имеющейся SAN без дополнительных затрат.

Наличие дополнительных сервисов и возможностей, таких как удаленная репликация, снапшоты и пр.

Высокий уровень безопасности SAN/


Единственным недостатком подобных решений является их высокая стоимость. В целом, отечественный рынок систем хранения данных отстает от рынка развитых западных государств, для которого характерно широкое использование СХД . Высокая стоимость и дефицит скоростных каналов связи – главные причины, тормозящие развитие российского рынка СХД .

RAID

Говоря о системах хранения данных, обязательно следует рассмотреть и одну и главных технологий, лежащих в основе работы таких систем и повсеместно используемых в современной IT-индустрии. Мы имеем в виду RAID-массивы.

RAID-массив состоит из нескольких дисков, которые управляются контроллером и связаны между собой посредством скоростных каналов передачи данных. Внешней системой такие диски (запоминающие устройства) воспринимаются в качестве единого целого. Тип используемого массива непосредственным образом влияет на степень быстродействия и отказоустойчивости. RAID-массивы используются для увеличения надежности хранения данных, а также для повышения скорости записи/чтения.

Существует несколько уровней RAID, используемых при создании сетей хранения данных. Чаще всего используются следующие уровни:

1. Это дисковый массив увеличенной производительности, без отказоустойчивости, с чередованием.
Информация разбивается на отдельные блоки данных. Записывается она одновременно на два либо несколько дисков.

Плюсы:

Суммируется объем памяти.

Значительное увеличение производительности (количество дисков непосредственно влияет на кратность повышения производительности).


Минусы:

Надежность RAID 0 ниже надежности даже самого ненадежного диска, поскольку в случае отказа любого из дисков, весь массив становится неработоспособным.


2. – дисковый зеркальный массив. Этот массив состоит из пары дисков, полностью копирующих друг друга.

Плюсы:

Обеспечение при распараллеливании запросов приемлемой скорости записи, а также выигрыша по скорости чтения.

Обеспечение высокой надежности – дисковый массив такого типа функционирует до того времени, пока в нем работает хотя бы 1 диск. Вероятность поломки одновременно 2-х дисков, равная произведению вероятностей поломки каждого из них, намного ниже, чем вероятность поломки одного диска. При поломке одного диска на практике необходимо немедленно принимать меры, вновь восстанавливая избыточность. Для этого рекомендуется с RAID любого уровня (за исключением нулевого) применять диски горячего резерва.


Минусы:

Недостаток RAID 1 состоит только в том, что пользователь получает один жесткий диск по цене двух дисков.



3. . Это построенный из RAID 1 массивов массив RAID 0.

4. RAID 2 . Используется для массивов, применяющих код Хемминга.

Массивы данного типа основываются на применении кода Хемминга. Диски подразделяются на 2 группы: для данных, а также для кодов, используемых для коррекции ошибок. Данные по дискам, используемым для хранения информации, распределяются аналогично распределению в RAID 0, то есть они разбиваются на блоки небольшого размера в соответствии с количеством дисков. На оставшихся дисках хранятся все коды коррекции ошибок, которые помогают восстановить информацию в случае, если один из жестких дисков выйдет из строя. Метод Хемминга, используемый в ЕСС памяти, дает возможность исправлять на лету однократные ошибки, а также обнаруживать двукратные.

RAID 3 , RAID 4 . Это массивы дисковые с чередованием, а также выделенным диском четности. В RAID 3 данные из n дисков разбиваются на составляющие размером меньше сектора (на блоки либо байты), после чего распределяются по дискам n-1. На одном диске хранятся блоки четности. В массиве RAID 2 для данной цели использовался n-1 диск, однако большинство информации на контрольных дисках использовалось для коррекции на лету ошибок, тогда как большинству пользователей при поломке диска достаточно простого восстановления информации (для этого бывает достаточно информации, которая помещается на одном жестком диске).

Массив RAID 4 напоминает RAID 3, однако, данные на нем разбиваются не на отдельные байты, а на блоки. Это отчасти позволило решить проблему недостаточно высокой скорости передачи данных, имеющих небольшой объем. Запись при этом осуществляется чересчур медленно из-за того, что при записи генерируется четность для блока, записываясь на единственный диск.
От RAID 2 RAID 3 отличается невозможностью скорректировать ошибки на лету, а также меньшей избыточностью.

Плюсы:

Облачные провайдеры тоже осуществляют активные закупки для своих нужд систем хранения данных, к примеру, Facebook и Google строят из готовых компонентов по индивидуальному заказу собственные серверы, но эти серверы в отчете IDC не учитываются.

Также в компании IDC ожидают, что вскоре развивающиеся рынки в отношении потребления СХД существенно обгонят рынки развитые, поскольку им свойственны более высокие темпы экономического роста. К примеру, регион Восточной и Центральной Европы, Африки и Ближнего Востока в 2014 г. по расходам на системы хранения данных превзойдет Японию. К 2015 г. Азиатско-Тихоокеанский регион, исключая Японию, по объему потребления систем хранения данных превзойдет Западную Европу.

Выполняемая нашей компанией «Навигатор» продажа систем хранения данных дает возможность каждому желающему получить надежную и долговечную основу для хранения своих мультимедийных данных. Широкий выбор Raid массивов, сетевых хранилищ и прочих систем дает возможность в индивидуальном порядке подобрать для каждого заказа RAID со второго по четвертый является невозможность осуществления параллельных операций записи, объясняемая тем, что для хранения цифровой информации о четности применяется отдельный контрольный диск. У RAID 5 вышеупомянутый недостаток отсутствует. Запись контрольных сумм и блоков данных осуществляется автоматически на все диски, асимметричность конфигурации дисков отсутствует. Под контрольными суммами имеется в виду результат операции XOR.XOR дает возможность заменить результатом любой операнд и, использовав алгоритм XOR, в результате получить недостающий операнд. Чтобы сохранить результат XOR , необходим всего один диск (размер его идентичен размеру любого диска в raid).

Плюсы:

Популярность RAID5 объясняется, прежде всего, его экономичностью. На запись на том RAID5 тратятся дополнительные ресурсы, что приводит в итоге к падению производительности, поскольку необходимы дополнительные вычисления, а также операции записи. Но зато при чтении (в сравнении с отдельным жестким диском) имеется определенный выигрыш, состоящий в том, что идущие с нескольких дисков потоки данных могут обрабатываться параллельно.


Минусы:

RAID 5 характеризуется намного более низкой производительностью, особенно при проведении операций, связанных с записью в произвольном порядке (типа Random Write), при которых производительность уменьшается на 10-25 процентов от производительности RAID 10 или RAID 0. Происходит это потому, что данному процессу требуется больше операций с дисками (происходит замена каждой операции записи сервера на RAID контроллере на 3 операции – 1 операцию чтения и 2 операции записи). Минусы RAID 5 проявляются тогда, когда из строя выходит один диск – при этом наблюдается переход всего тома в критический режим, все операции чтения и записи сопровождаются дополнительными манипуляциями, что приводит к резкому падению производительности. Уровень надежности при этом падает до уровня надежности RAID 0, снабженного соответствующим количеством дисков, становясь в n раз меньше надежности одиночного диска. В случае, если до восстановления массива выйдет из строя еще хоть один диск либо на нем возникнет невосстановимая ошибка, массив разрушится, причем данные на нем обычными методами восстановить не удастся. Учтите также, что процесс восстановления за счет избыточности данных RAID, носящий название RAID Reconstruction, после того, как диск выйдет из строя, вызовет интенсивную непрерывную нагрузку чтения со всех дисков, которая будет сохраняться в течение многих часов. В результате этого один из оставшихся дисков может выйти из строя. Также могут выявиться не обнаруженные ранее сбои чтения данных вcold data массивах (тех данных, к которым во время обычной работы массива не обращаются – малоактивных и архивных), что приводит к повышению риска сбоя во время восстановления данных.



6. – это массив RAID 50, который построен из массивов RAID5;

7. – массив дисковый с чередованием, который использует 2 контрольные суммы, вычисляемые 2-мя независимыми способами.

RAID 6 во многом аналогичен RAID 5, однако отличается от него более высокой степенью надежности: в нем под контрольные суммы происходит выделение емкости двух дисков, две суммы рассчитываются по различным алгоритмам. Необходим RAID-контроллер более высокой мощности. Помогает защитить от кратного отказа, обеспечивая работоспособность после выхода из строя одновременно двух дисков. Организация массива требует использования минимум четырех дисков. Использование RAID-6 обычно приводит к падению производительности дисковой группы приблизительно на 10-15 процентов. Это объясняется большим объемом информации, которую приходится обрабатывать контроллеру (появляется необходимость в расчете второй контрольной суммы, а также чтении и перезаписи большего количества дисковых блоков в процессе записи каждого из блоков).

8. – это массив RAID 0, который построен из массивов RAID6.

9. Hybrid RAID . Это еще один уровень массива RAID, ставший в последнее время достаточно популярным. Это обычные уровни RAID, используемые вместе с дополнительным программным обеспечением, а также SSD-дисками, которые применяются в качестве кэша для чтения. Это приводит к увеличению производительности системы, объясняемой тем, что SSD, в сравнении с HDD, обладают намного лучшими скоростными характеристиками. Сегодня существует несколько реализаций, к примеру, Crucial Adrenaline, а также несколько бюджетных контроллеров Adaptec. В настоящее время использование Hybrid RAID из-за маленького ресурса SSD-дисков не рекомендуется.


Операции считывания в Hybrid RAID выполняются с твердотельного накопителя, обладающего большей скоростью, а операции записи осуществляются и на твердотельных накопителях, и на жестких дисках (делается это с целью выполнения резервирования).
Hybrid RAID отлично подходит для приложений, использующих данные нижнего уровня (виртуальной вычислительной машины, файлового сервера либо интернет-шлюза).

Особенности современного рынка СХД

Аналитическая компания IDC летом 2013 г. обнародовала очередной свой прогноз для рынка СХД , рассчитанный ею до 2017 г. Подсчеты аналитиков демонстрируют, что в ближайшее четырехлетие мировыми предприятиями будут закуплены СХД , общая емкость которых составит сто тридцать восемь экзабайт. Совокупная реализуемая мощность систем хранения ежегодно будет увеличиваться примерно на тридцать процентов.

Тем не менее, в сравнении с предыдущими годами, когда наблюдался бурный рост потребления хранилищ данных, темпы этого роста несколько замедлятся, так как сегодня большинство компаний использует облачные решения, отдавая предпочтение технологиям, оптимизирующим хранилища данных. Экономия места в хранилищах достигается при помощи таких средств, как виртуализация, сжатие данных, дедупликация данных и пр. Все вышеперечисленные средства обеспечивают экономию места, позволяя компаниям избегать спонтанных покупок и прибегать к приобретению новых систем хранения лишь тогда, когда в них действительно имеется необходимость.

Из 138 экзабайт, продажа которых ожидается в 2017 г., 102 экзабайта будет приходиться на внешние СХД , а 36 – на внутренние. В 2012 г. было реализовано СХД на двадцать экзабайт для внешних систем и на восемь – для внутренних. Финансовые затраты на промышленные СХД ежегодно будут увеличиваться приблизительно на 4,1 процента и к 2017 г. составят порядка сорока двух с половиной миллиардов долларов.

Мы уже отмечали, что переживший недавно настоящий бум мировой рынок СХД постепенно пошел на спад. В 2005 г. рост потребления СХД составил на промышленном уровне шестьдесят пять процентов, а в 2006, а также 2007 г. – по пятьдесят девять процентов. В последующие годы рост потребления СХД еще больше снизился из-за негативного влияния мирового экономического кризиса.

Аналитики прогнозируют, что рост использования облачных СХД приведет к уменьшению потребления решений систем хранения данных на корпоративном уровне. Облачные провайдеры тоже осуществляют активные закупки для своих нужд систем хранения данных, к примеру, Facebook и Google строят из готовых компонентов по индивидуальному заказу собственные серверы, но эти серверы в отчете IDC не учитываются.

Также в компании IDC ожидают, что вскоре развивающиеся рынки в отношении потребления СХД существенно обгонят рынки развитые, поскольку им свойственны более высокие темпы экономического роста. К примеру, регион Восточной и Центральной Европы, Африки и Ближнего Востока в 2014 г. по расходам на системы хранения данных превзойдет Японию. К 2015 г. Азиатско-Тихоокеанский регион, исключая Японию, по объему потребления систем хранения данных превзойдет Западную Европу.

Оперативная продажа систем хранения данных

Выполняемая нашей компанией «Навигатор» продажа систем хранения данных дает возможность каждому желающему получить надежную и долговечную основу для хранения своих мультимедийных данных. Широкий выбор Raid массивов, сетевых хранилищ и прочих систем дает возможность в индивидуальном порядке подобрать для каждого заказчика тот комплекс, который подойдет для него наилучшим образом.

Широкие технические возможность, грамотность и опыт персонала компании гарантируют быстрое и комплексное выполнение поставленной задачи. При этом мы не ограничивается исключительно продажей систем хранения данных, поскольку выполняем также ее настройку, запуск и последующее сервисное и техническое обслуживание.

С повседневным усложнением сетевых компьютерных систем и глобальных корпоративных решений мир начал требовать технологий, которые бы дали толчок к возрождению корпоративных систем хранения информации (сторедж-систем). И вот, одна единая технология приносит в мировую сокровищницу достижений в области сторедж невиданное ранее быстродействие, колоссальные возможности масштабирования и исключительные преимущества общей стоимости владения. Обстоятельства, которые сформировались с появлением стандарта FC-AL (Fibre Channel - Arbitrated Loop) и SAN (Storage Area Network), которая развивается на его основе, обещают революцию в дата-ориентированных технологиях компьютинга.

«The most significant development in storage we"ve seen in 15 years»

Data Communications International, March 21, 1998

Формальное определение SAN в трактовке Storage Network Industry Association (SNIA):

«Сеть, главной задачей которой является передача данных между компьютерными системами и устройствами хранения данных, а также между самими сторедж-системами. SAN состоит из коммуникационной инфраструктуры, которая обеспечивает физическую связь, а также отвечает за уровень управления (management layer), который объединяет связи, сторедж и компьютерные системы, осуществляя передачу данных безопасно и надежно».

SNIA Technical Dictionary, copyright Storage Network Industry Association, 2000

Варианты организации доступа к сторедж-системам

Различают три основных варианта организации доступа к системам хранения:

  • SAS (Server Attached Storage), сторедж, присоединенный к серверу;
  • NAS (Network Attached Storage), сторедж, подсоединенный к сети;
  • SAN (Storage Area Network), сеть хранения данных.

Рассмотрим топологии соответствующих сторедж-систем и их особенности.

SAS

Сторедж-система, присоединенная к серверу. Знакомый всем, традиционный способ подключения системы хранения данных к высокоскоростному интерфейсу в сервере, как правило, к параллельному SCSI интерфейсу.

Рисунок 1. Server Attached Storage

Использование отдельного корпуса для сторедж-системы в рамках топологии SAS не является обязательным.

Основное преимущество сторедж, подсоединенного к серверу, в сравнении с другими вариантами - низкая цена и высокое быстродействие из расчета один сторедж для одного сервера. Такая топология является самой оптимальной в случае использования одного сервера, через который организуется доступ к массиву данных. Но у нее остается ряд проблем, которые побудили проектировщиков искать другие варианты организации доступа к системам хранения данных.

К особенностям SAS можно отнести:

  • Доступ к данных зависит от ОС и файловой системы (в общем случае);
  • Сложность организации систем с высокой готовностью;
  • Низкая стоимость;
  • Высокое быстродействие в рамках одной ноды;
  • Уменьшение скорости отклика при загрузке сервера, который обслуживает сторедж.

NAS

Сторедж-система, подсоединенная к сети. Этот вариант организации доступа появился сравнительно недавно. Основным его преимуществом является удобство интеграции дополнительной системы хранения данных в существующие сети, но сам по себе он не привносит сколь-нибудь радикальных улучшений в архитектуру сторедж. Фактически NAS есть чистый файл-сервер, и сегодня можно встретить немало новых реализаций сторедж типа NAS на основе технологии тонкого сервера (Thin Server).


Рисунок 2. Network Attached Storage.

Особенности NAS:

  • Выделенный файл-сервер;
  • Доступ к данным не зависит от ОС и платформы;
  • Удобство администрирования;
  • Максимальная простота установки;
  • Низкая масштабируемость;
  • Конфликт с трафиком LAN/WAN.

Сторедж, построенный по технологии NAS, является идеальным вариантом для дешевых серверов с минимальным набором функций.

SAN

Сети хранения данных начали интенсивно развиваться и внедряться лишь с 1999 года. Основой SAN является отдельная от LAN/WAN сеть, которая служит для организации доступа к данным серверов и рабочих станций, занимающихся их прямой обработкой. Такая сеть создается на основе стандарта Fibre Channel, что дает сторедж-системам преимущества технологий LAN/WAN и возможности по организации стандартных платформ для систем с высокой готовностью и высокой интенсивностью запросов. Почти единственным недостатком SAN на сегодня остается относительно высокая цена компонент, но при этом общая стоимость владения для корпоративных систем, построенных с использованием технологии сетей хранения данных, является довольно низкой.


Рисунок 3. Storage Area Network.

К основным преимуществам SAN можно отнести практически все ее особенности:

  • Независимость топологии SAN от сторедж-систем и серверов;
  • Удобное централизованное управление;
  • Отсутствие конфликта с трафиком LAN/WAN;
  • Удобное резервирование данных без загрузки локальной сети и серверов;
  • Высокое быстродействие;
  • Высокая масштабируемость;
  • Высокая гибкость;
  • Высокая готовность и отказоустойчивость.

Следует также заметить, что технология эта еще довольно молодая и в ближайшее время она должна пережить немало усовершенствований в области стандартизации управления и способов взаимодействия SAN подсетей. Но можно надеяться, что это угрожает пионерам лишь дополнительными перспективами первенства.

FC как основа построения SAN

Подобно LAN, SAN может создаваться с использованием различных топологий и носителей. При построении SAN может использоваться как параллельный SCSI интерфейс, так и Fibre Channel или, скажем, SCI (Scalable Coherent Interface), но своей все возрастающей популярностью SAN обязана именно Fibre Channel. В проектировании этого интерфейса принимали участие специалисты со значительным опытом в разработке как канальных, так и сетевых интерфейсов, и им удалось объединить все важные положительные черты обеих технологий для того, чтобы получить что-то в самом деле революционно новое. Что именно?

Основные ключевые особенности канальных:

  • Низкие задержки
  • Высокие скорости
  • Высокая надежность
  • Топология точка-точка
  • Небольшие расстояния между нодами
  • Зависимость от платформы
и сетевых интерфейсов:
  • Многоточечные топологии
  • Большие расстояния
  • Высокая масштабируемость
  • Низкие скорости
  • Большие задержки
объединились в Fibre Channel:
  • Высокие скорости
  • Независимость от протокола (0-3 уровни)
  • Большие расстояния
  • Низкие задержки
  • Высокая надежность
  • Высокая масштабируемость
  • Многоточечные топологии

Традиционно сторедж интерфейсы (то, что находится между хостом и устройствами хранения информации) были преградой на пути к росту быстродействия и увеличению объема систем хранения данных. В то же время прикладные задачи требуют значительного прироста аппаратных мощностей, которые, в свою очередь, тянут за собой потребность в увеличении пропускной способности интерфейсов для связи со сторедж-системами. Именно проблемы построения гибкого высокоскоростного доступа к данным помогает решить Fibre Channel.

Стандарт Fibre Channel был окончательно определен за последние несколько лет (с 1997-го по 1999-й), на протяжении которых была проведена колоссальная работа по согласованию взаимодействия производителей различных компонент, и было сделано все необходимое, чтобы Fibre Channel превратился из чисто концептуальной технологии в реальную, которая получила поддержку в виде инсталляций в лабораториях и вычислительных центрах. В году 1997 были спроектированы первые коммерческие образцы краеугольных компонент для построения SAN на базе FC, таких как адаптеры, хабы, свичи и мосты. Таким образом, уже начиная с 1998-го года FC используется в коммерческих целях в деловой сфере, на производстве и в масштабных проектах реализации систем, критичных к отказам.

Fibre Channel - это открытый промышленный стандарт высокоскоростного последовательного интерфейса. Он обеспечивает подключение серверов и сторедж-систем на расстоянии до 10 км (при использовании стандартного оснащения) на скорости 100 MB/s (на выставке Cebit"2000 были представлены образцы продукции, которые используют новый стандарт Fibre Channel со скоростями 200 MB/s на одно кольцо, а в лабораторных условиях уже эксплуатируются реализации нового стандарта со скоростями 400 MB/s, что составляет 800 MB/s при использовании двойного кольца). (На момент публикации статьи ряд производителей уже начал отгружать сетевые карточки и свичи на FC 200 MB/s.) Fibre Channel одновременно поддерживает целый ряд стандартных протоколов (среди которых TCP/IP и SCSI-3) при использовании одного физического носителя, который потенциально упрощает построение сетевой инфраструктуры, к тому же это предоставляет возможности для уменьшения стоимости монтажа и обслуживания. Тем не менее использование отдельных подсетей для LAN/WAN и SAN имеет ряд преимуществ и является рекомендованным по умолчанию.

Одним из важнейших преимуществ Fibre Channel наряду со скоростными параметрами (которые, кстати, не всегда являются главными для пользователей SAN и могут быть реализованы с помощью других технологий) является возможность работы на больших расстояниях и гибкость топологии, которая пришла в новый стандарт из сетевых технологий. Таким образом, концепция построения топологии сети хранения данных базируется на тех же принципах, что и традиционные сети, как правило, на основе концентраторов и коммутаторов, которые помогают предотвратить падение скорости при возрастании количества нод и создают возможности удобной организации систем без единой точки отказов.

Для лучшего понимания преимуществ и особенностей этого интерфейса приведем сравнительную характеристику FC и Parallel SCSI в виде таблицы.

Таблица 1. Сравнение технологий Fibre Channel и параллельного SCSI

В стандарте Fibre Channel предполагается использование разнообразных топологий, таких как точка-точка (Point-to-Point), кольцо или FC-AL концентратор (Loop или Hub FC-AL), магистральный коммутатор (Fabric/Switch).

Топология point-to-point используется для подсоединения одиночной сторедж-системы к серверу.

Loop или Hub FC-AL - для подсоединения множественных сторедж устройств к нескольким хостам. При организации двойного кольца увеличивается быстродействие и отказоустойчивость системы.

Коммутаторы используются для обеспечения максимального быстродействия и отказоустойчивости для сложных, больших и разветвленных систем.

Благодаря сетевой гибкости в SAN заложена чрезвычайно важная особенность - удобная возможность построения отказоустойчивых систем.

Предлагая альтернативные решения для систем хранения данных и возможности по объединению нескольких сторедж для резервирования аппаратных средств, SAN помогает обеспечивать защиту аппаратно-программных комплексов от аппаратных сбоев. Для демонстрации приведем пример создания двухнодовой системы без точек отказов.


Рисунок 4. No Single Point of Failure.

Построение трех- и более нодовых систем осуществляется простым добавлением в FC сеть дополнительных серверов и подключением их к обоим концентраторам/ коммутаторам).

При использовании FC построение устойчивых к сбоям (disaster tolerant) систем становится прозрачным. Сетевые каналы и для сторедж, и для локальной сети можно проложить на основе оптоволокна (до 10 км и больше с использованием усилителей сигнала) как физического носителя для FC, при этом используется стандартная аппаратура, которая дает возможность значительно уменьшить стоимость подобных систем.

Благодаря возможности доступа ко всем компонентам SAN из любой ее точки мы получаем чрезвычайно гибко управляемую сеть данных. При этом следует заметить, что в SAN обеспечивается прозрачность (возможность видеть) всех компонентов вплоть до дисков в сторедж-системах. Эта особенность подтолкнула производителей компонентов к использованию своего значительного опыта в построении систем управления для LAN/WAN с тем, чтобы заложить широкие возможности по мониторингу и управлению во все компоненты SAN. Эти возможности включают в себя мониторинг и управление отдельных нод, сторедж компонентов, корпусов, сетевых устройств и сетевых подструктур.

В системе управления и мониторинга SAN используются такие открытые стандарты, как:

  • SCSI command set
  • SCSI Enclosure Services (SES)
  • SCSI Self Monitoring Analysis and Reporting Technology (S.M.A.R.T.)
  • SAF-TE (SCSI Accessed Fault-Tolerant Enclosures)
  • Simple Network Management Protocol (SNMP)
  • Web-Based Enterprise Management (WBEM)

Системы, построенные с использованием технологий SAN, не только обеспечивают администратору возможность следить за развитием и состоянием сторедж ресурсов, но и открывают возможности по мониторингу и контролю трафика. Благодаря таким ресурсам программные средства управления SAN реализуют наиболее эффективные схемы планирования объема сторедж и балансирование нагрузки на компоненты системы.

Сети хранения данных прекрасно интегрируются в существующие информационные инфраструктуры. Их внедрение не требует каких-либо изменений в уже существующих сетях LAN и WAN, а лишь расширяет возможности существующих систем, избавляя их от задач, ориентированных на передачу больших объемов данных. Причем при интеграции и администрировании SAN очень важным является то, что ключевые элементы сети поддерживают горячую замену и установку, с возможностями динамического конфигурирования. Так что добавить тот или другой компонент или осуществить его замену администратор может, не выключая систему. И весь этот процесс интеграции может быть визуально отображен в графической системе управления SAN.

Рассмотрев вышеперечисленные преимущества, можно выделить ряд ключевых моментов, которые непосредственно влияют на одно из основных преимуществ Storage Area Network - общую стоимость владения (Total Cost Ownership).

Невероятные возможности масштабирования позволяют предприятию, которое использует SAN, вкладывать деньги в серверы и сторедж по мере необходимости. А также сохранить свои вложения в уже инсталлированную технику при смене технологических поколений. Каждый новый сервер будет иметь возможность высокоскоростного доступа к сторедж и каждый дополнительный гигабайт сторедж будет доступен всем серверам подсети по команде администратора.

Прекрасные возможности по построению отказоустойчивых систем могут приносить прямую коммерческую выгоду от минимизации простоев и спасать систему в случае возникновения стихийного бедствия или каких-нибудь других катаклизмов.

Управляемость компонентов и прозрачность системы предоставляют возможность осуществлять централизованное администрирование всех сторедж ресурсов, а это, в свою очередь, значительно уменьшает затраты на их поддержку, стоимость которой, как правило, составляет более 50% от стоимости оснащения.

Влияние SAN на прикладные задачи

Для того чтобы нашим читателям стало понятней, насколько практически полезны технологии, которые рассматриваются в этой статье, приведем несколько примеров прикладных задач, которые без использования сетей хранения данных решались бы неэффективно, требовали бы колоссальных финансовых вложений или же вообще не решались бы стандартными методами.

Резервирование и восстановление данных (Data Backup and Recovery)

Используя традиционный SCSI интерфейс, пользователь при построении систем резервирования и восстановления данных сталкивается с рядом сложных проблем, которые можно очень просто решить, используя технологии SAN и FC.

Таким образом, использование сетей хранения данных выводит решение задачи резервирования и восстановления на новый уровень и предоставляет возможность осуществлять бэкап в несколько раз быстрее, чем раньше, без загрузки локальной сети и серверов работой по резервированию данных.

Кластеризация серверов (Server Clustering)

Одной из типичных задач, для которых эффективно используется SAN, является кластеризация серверов. Поскольку один из ключевых моментов в организации высокоскоростных кластерных систем, которые работают с данными - это доступ к сторедж, то с появлением SAN построение многонодовых кластеров на аппаратном уровне решается простым добавлением сервера с подключением к SAN (это можно сделать, даже не выключая системы, поскольку свичи FC поддерживают hot-plug). При использовании параллельного SCSI интерфейса, возможности по подсоединению и масштабируемость которого значительно хуже, чем у FC, кластеры, ориентированные на обработку данных, было бы тяжело сделать с количеством нод больше двух. Коммутаторы параллельного SCSI - весьма сложные и дорогие устройства, а для FC это стандартный компонент. Для создания кластера, который не будет иметь ни единой точки отказов, достаточно интегрировать в систему зеркальную SAN (технология DUAL Path).

В рамках кластеризации одна из технологий RAIS (Redundant Array of Inexpensive Servers) кажется особенно привлекательной для построения мощных масштабируемых систем интернет-коммерции и других видов задач с повышенными требованиями к мощности. По словам Alistair A. Croll, сооснователя Networkshop Inc, использование RAIS оказывается достаточно эффективным:«Например, за $12000-15000 вы можете купить около шести недорогих одно-двухпроцессорных (Pentium III) Linux/Apache серверов. Мощность, масштабируемость и отказоустойчивость такой системы будет значительно выше, чем, например, у одного четырехпроцессорного сервера на базе процессоров Xeon, а стоимость одинаковая».

Одновременный доступ к видео и распределение данных (Concurrent video streaming, data sharing)

Вообразите себе задачу, когда вам нужно на нескольких (скажем, >5) станциях редактировать видео или просто работать над данными огромного объема. Передача файла размером 100GB по локальной сети займет у вас несколько минут, а общая работа над ним будет очень сложной задачей. При использовании SAN каждая рабочая станция и сервер сети получают доступ к файлу на скорости, эквивалентной локальному высокоскоростному диску. Если вам нужны еще одна станция/сервер для обработки данных, вы сможете ее прибавить к SAN, не выключая сети, простым подсоединением станции к SAN коммутатору и предоставлением ей прав доступа к сторедж. Если же вас перестанет удовлетворять быстродействие подсистемы данных, вы сможете просто прибавить еще один сторедж и с использованием технологии распределения данных (например, RAID 0) получить вдвое большее быстродействие.

Основные компоненты SAN

Среда

Для соединения компонентов в рамках стандарта Fibre Channel используют медные и оптические кабели. Оба типа кабелей могут использоваться одновременно при построении SAN. Конверсия интерфейсов осуществляется с помощью GBIC (Gigabit Interface Converter) и MIA (Media Interface Adapter). Оба типа кабеля сегодня обеспечивают одинаковую скорость передачи данных. Медный кабель используется для коротких расстояний (до 30 метров), оптический - как для коротких, так и для расстояний до 10 км и больше. Используют многомодовый и одномодовый оптические кабели. Многомодовый (Multimode) кабель используется для коротких расстояний (до 2 км). Внутренний диаметр оптоволокна мультимодового кабеля составляет 62,5 или 50 микрон. Для обеспечения скорости передачи 100 МБ/с (200 МБ/с в дуплексе) при использовании многомодового оптоволокна длина кабеля не должна превышать 200 метров. Одномодовый кабель используется для больших расстояний. Длина такого кабеля ограничена мощностью лазера, который используется в передатчике сигнала. Внутренний диаметр оптоволокна одномодового кабеля составляет 7 или 9 микрон, он обеспечивает прохождение одиночного луча.

Коннекторы, адаптеры

Для подсоединения медных кабелей используются коннекторы типа DB-9 или HSSD. HSSD считается более надежным, но DB-9 используется так же часто, потому что он более простой и дешевый. Стандартным (наиболее распространенным) коннектором для оптических кабелей является SC коннектор, он обеспечивает качественное, четкое соединение. Для обычного подключения используются многомодовые SC коннекторы, а для отдаленного - одномодовые. В многопортовых адаптерах используются микроконнекторы.

Наиболее распространены адаптеры для FC под шину PCI 64 bit. Также много FC адаптеров вырабатывается под шину S-BUS, для специализированного использования выпускаются адаптеры под MCA, EISA, GIO, HIO, PMC, Compact PCI. Самые популярные - однопортовые, встречаются двух- и четырехпортовые карточки. На PCI адаптерах, как правило, используют DB-9, HSSD, SC коннекторы. Также часто встречаются GBIC-based адаптеры, которые поставляются как с модулями GBIC, так и без них. Fibre Channel адаптеры отличаются классами, которые они поддерживают, и разнообразными особенностями. Для понимания отличий приведем сравнительную таблицу адаптеров производства фирмы QLogic.

Fibre Channel Host Bus Adapter Family Chart
SANblade 64 Bit FCAL Publ. Pvt Loop FL Port Class 3 F Port Class 2 Point to Point IP/ SCSI Full Duplex FC Tape PCI 1.0 Hot Plug Spec Solaris Dynamic Reconfig VIВ 2Gb
2100 Series 33 & 66MHz PCI X X X
2200 Series 33 & 66MHz PCI X X X X X X X X X
33MHz PCI X X X X X X X X X X
25 MHZ Sbus X X X X X X X X X X
2300 Series 66 MHZ PCI/ 133MHZ PCI-X X X X X X X X X X X X

Концентраторы

Fibre Channel HUBs (концентраторы) используются для подключения нод к FC кольцу (FC Loop) и имеют структуру, похожую на Token Ring концентраторы. Поскольку разрыв кольца может привести к прекращению функционирования сети, в современных FC концентраторах используются порты обхода кольца (PBC-port bypass circuit), которые разрешают автоматически открывать/закрывать кольцо (подключать/отключать системы, присоединенные к концентратору). Обычно FC HUBs поддерживают до 10 подключений и могут стекироваться до 127 портов на кольцо. Все устройства, подключенные к HUB, получают общую полосу пропускания, которую они могут разделять между собой.

Коммутаторы

Fibre Channel Switches (коммутаторы) имеют те же функции, что и привычные читателю LAN коммутаторы. Они обеспечивают полноскоростное неблокированное подключение между нодами. Любая нода, подключенная к FC коммутатору, получает полную (с возможностями масштабирования) полосу пропускания. При увеличении количества портов коммутированной сети ее пропускная способность увеличивается. Коммутаторы могут использоваться вместе с концентраторами (которые используют для участков, не требующих выделенной полосы пропуска для каждой ноды) для достижения оптимального соотношения цена/производительность. Благодаря каскадированию свичи потенциально могут использоваться для создания FC сетей с количеством адресов 2 24 (свыше 16 миллионов).

Мосты

FC Bridges (мосты или мультиплексоры) используются для подключения устройств с параллельным SCSI к сети на базе FC. Они обеспечивают трансляцию SCSI пакетов между Fibre Channel и Parallel SCSI устройствами, примерами которых могут служить Solid State Disk (SSD) или библиотеки на магнитных лентах. Следует заметить, что в последнее время практически все устройства, которые могут быть утилизированы в рамках SAN, производители начинают выпускать с вмонтированным FC интерфейсом для прямого их подключения к сетям хранения данных.

Серверы и Сторедж

Несмотря на то что серверы и сторедж - далеко не последние по важности компоненты SAN, мы на их описании останавливаться не будем, поскольку уверены, что с ними хорошо знакомы все наши читатели.

В конце хочется добавить, что эта статья - лишь первый шаг к сетям хранения данных. Для полного понимания темы читателю следует уделить немало внимания особенностям реализации компонент производителями SAN и программным средствам управления, поскольку без них Storage Area Network - это всего лишь набор элементов для коммутации сторедж-систем, которые не принесут вам полноты преимуществ от реализации сети хранения данных.

Заключение

Сегодня Storage Area Network является довольно новой технологией, которая в скором времени может стать массовой в кругу корпоративных заказчиков. В Европе и США предприятия, которые имеют достаточно большой парк инсталлированных сторедж-систем, уже начинают переходить на сети хранения данных для организации сторедж с наилучшим показателем общей стоимости владения.

По прогнозам аналитиков, в 2005 году значительное количество серверов среднего и верхнего уровня будут поставляться с предварительно установленным интерфейсом Fibre Channel (такую тенденцию можно заметить уже сегодня), и лишь для внутреннего подключения дисков в серверах будет использоваться параллельный SCSI интерфейс. Уже сегодня при построении сторедж-систем и приобретении серверов среднего и верхнего уровня следует обратить внимание на эту перспективную технологию, тем более, что уже сегодня она дает возможность реализовать ряд задач куда дешевле, чем с помощью специализированных решений. Кроме того, вкладывая в технологию SAN сегодня, вы не потеряете свои вложения завтра, поскольку особенности Fibre Channel создают прекрасные возможности для использования в будущем вложенных сегодня инвестиций.

P.S.

Предыдущая версия статьи была написана в июне 2000 года, но в связи с отсутствием массового интереса к технологии сетей хранения данных публикация была отложена на будущее. Это будущее настало сегодня, и я надеюсь, что данная статья побудит читателя осознать необходимость перехода на технологию сетей хранения данных, как передовую технологию построения сторедж-систем и организации доступа к данным.

В данной статье, мы рассмотрим, какие виды систем хранения данных (СХД) на сегодняшнее время существуют, так же рассмотрю одни из основных компонентов СХД – внешние интерфейсы подключения (протоколы взаимодействия) и накопители, на которых хранятся данные. Так же проведем их общее сравнение по предоставляемым возможностям. Для примеров мы буду ссылаться на линейку СХД, представляемую компанией DELL.

  • Примеры моделей DAS
  • Примеры моделей NAS
  • Примеры моделей SAN
  • Типы носителей информации и протокол взаимодействия с системами хранения данных Протокол Fibre Channel
  • Протокол iSCSI
  • Протокол SAS
  • Сравнение протоколов подключения систем хранения данных

Существующие типы систем хранения данных

В случае отдельного ПК под системой хранения данных можно понимать внутренний жесткий диск или систему дисков (RAID массив). Если же речь заходит о системах хранения данных разного уровня предприятий, то традиционно можно выделить три технологии организации хранения данных:

  • Direct Attached Storage (DAS);
  • Network Attach Storage (NAS);
  • Storage Area Network (SAN).

Устройства DAS (Direct Attached Storage) – решение, когда устройство для хранения данных подключено непосредственно к серверу, или к рабочей станции, как правило, через интерфейс по протоколу SAS.

Устройства NAS (Network Attached Storage) – отдельно стоящая интегрированная дисковая система, по-сути, NAS-cервер, со своей специализированной ОС и набором полезных функций быстрого запуска системы и обеспечения доступа к файлам. Система подключается к обычной компьютерной сети (ЛВС), и является быстрым решением проблемы нехватки свободного дискового пространства, доступного для пользователей данной сети.

Storage Area Network (SAN) –это специальная выделенная сеть, объединяющая устройства хранения данных с серверами приложений, обычно строится на основе протокола Fibre Channel или протокола iSCSI.

Теперь давайте более детально рассмотрим каждый из приведенных выше типов СХД, их положительные и отрицательные стороны.

Архитектура системы хранения DAS (Direct Attached Storage)

К основным преимуществам DAS систем можно отнести их низкую стоимость (в сравнении с другими решениями СХД), простоту развертывания и администрирования, а также высокую скорость обмена данными между системой хранения и сервером. Собственно, именно благодаря этому они завоевали большую популярность в сегменте малых офисов, хостинг-провайдеров и небольших корпоративных сетей. В то же время DAS-системы имеют и свои недостатки, к которым можно отнести неоптимальную утилизацию ресурсов, поскольку каждая DAS система требует подключения выделенного сервера и позволяет подключить максимум 2 сервера к дисковой полке в определенной конфигурации.

Рисунок 1: Архитектура Direct Attached Storage

  • Достаточно низкая стоимость. По сути эта СХД представляет собой дисковую корзину с жесткими дисками, вынесенную за пределы сервера.
  • Простота развертывания и администрирования.
  • Высокая скорость обмена между дисковым массивом и сервером.
  • Низкая надежность. При выходе из строя сервера, к которому подключено данное хранилище, данные перестают быть доступными.
  • Низкая степень консолидации ресурсов – вся ёмкость доступна одному или двум серверам, что снижает гибкость распределения данных между серверами. В результате необходимо закупать либо больше внутренних жестких дисков, либо ставить дополнительные дисковые полки для других серверных систем
  • Низкая утилизация ресурсов.

Примеры моделей DAS

Из интересных моделей устройств этого типа хотелось бы отметить модельный ряд DELL PowerVaultсерии MD. Начальные модели дисковых полок (JBOD) MD1000 и MD1120 позволяют создавать дисковые массивы c количеством диском до 144-х. Это достигается за счет модульности архитектуры, в массив можно подключить вплоть до 6 устройств, по три дисковых полки на каждый канал RAID-контроллера. Например, если использовать стойку из 6 DELL PowerVault MD1120, то реализуем массив с эффективным объемом данных 43,2 ТБ. Подобные дисковые полки подключаются одним или двумя кабелями SAS к внешним портам RAID-контроллеров, установленных в серверах Dell PowerEdge и управляются консолью управления самого сервера.

Если же есть потребность в создании архитектуры с высокой отказоустойчивостью, например, для создания отказоустойчивого кластера MS Exchange, SQL-сервера, то для этих целей подойдет модельDELL PowerVault MD3000. Это система уже имеет активную логику внутри дисковой полки и полностью избыточна за счет использования двух встроенных контроллеров RAID, работающих по схеме «актвиный-активный» и имеющих зеркалированную копию буферизованных в кэш-памяти данных.

Оба контроллера параллельно обрабатывают потоки чтения и записи данных, и в случае неисправности одного из них, второй «подхватывает» данные с соседнего контроллера. При этом подключение к низко уровнему SAS-контроллеру внутри 2-х серверов (кластеру) может производиться по нескольким интерфейсам (MPIO), что обеспечивает избыточность и балансировку нагрузки в средах Microsoft. Для наращивания дискового пространства к PowerVault MD3000 можно подключить 2-е дополнительные дисковые полки MD1000.

Архитектура системы хранения NAS (Network Attached Storage)

Технология NAS (сетевые подсистемы хранения данных, Network Attached Storage) развивается как альтернатива универсальным серверам, несущим множество функций (печати, приложений, факс сервер, электронная почта и т.п.). В отличие от них NAS-устройства исполняют только одну функцию — файловый сервер. И стараются сделать это как можно лучше, проще и быстрее.

NAS подключаются к ЛВС и осуществляют доступ к данным для неограниченного количества гетерогенных клиентов (клиентов с различными ОС) или других серверов. В настоящее время практически все NAS устройства ориентированы на использование в сетях Ethernet (Fast Ethernet, Gigabit Ethernet) на основе протоколов TCP/IP. Доступ к устройствам NAS производится с помощью специальных протоколов доступа к файлам. Наиболее распространенными протоколами файлового доступа являются протоколы CIFS, NFS и DAFS. Внутри подобных серверов стоят специализированные ОС, такие как MS Windows Storage Server.

Рисунок 2: Архитектура Network Attached Storage

  • Дешевизна и доступность его ресурсов не только для отдельных серверов, но и для любых компьютеров организации.
  • Простота коллективного использования ресурсов.
  • Простота развертывания и администрирования
  • Универсальность для клиентов (один сервер может обслуживать клиентов MS, Novell, Mac, Unix)
  • Доступ к информации через протоколы “сетевых файловых систем” зачастую медленнее, чем как к локальному диску.
  • Большинство недорогих NAS-серверов не позволяют обеспечить скоростной и гибкий метод доступа к данным на уровне блоков, присущих SAN системам, а не на уровне файлов.

Примеры моделей NAS

В настоящий момент классические NAS решения, такие как PowerVault NF100/500/600 . Это системы на базе массовых 1 и 2-х процессорных серверов Dell, оптимизированных для быстрого развертывания NAS-сервисов. Они позволяют создавать файловое хранилище вплоть до 10 ТБ (PowerVault NF600) используя SATA или SAS диски, и подключив данный сервер к ЛВС. Также имеются и более высокопроизводительные интегрированные решение, например PowerVault NX1950 , вмещающие в себя 15 дисков и расширяемые до 45 за счет подключения дополнительных дисковых полок MD1000.

Серьезным преимуществом NX1950 является возможность работать не только с файлами, но и с блоками данных на уровне протокола iSCSI. Также разновидность NX1950 может работать как «гейтвэй», позволяющий организовать файловый доступ к СХД на базе iSCSI (c блочным методом доступа), например MD3000i или к Dell EqualLogic PS5x00.

Архитектура системы хранения SAN (Storage Area Network)

Storage Area Network (SAN) — это специальная выделенная сеть, объединяющая устройства хранения данных с серверами приложений, обычно строится на основе протокола Fibre Channel, либо на набирающем обороты протоколу iSCSI. В отличие от NAS, SAN не имеет понятия о файлах: файловые операции выполняются на подключенных к SAN серверах. SAN оперирует блоками, как некий большой жесткий диск. Идеальный результат работы SAN — возможность доступа любого сервера под любой операционной системой к любой части дисковой емкости, находящейся в SAN. Оконечные элементы SAN — это серверы приложений и системы хранения данных (дисковые массивы, ленточные библиотеки и т. п.). А между ними, как и в обычной сети, находятся адаптеры, коммутаторы, мосты, концентраторы. ISCSI является более «дружелюбным» протоколом, поскольку он основан на использовании стандартной инфраструктуры Ethernet – сетевых карт, коммутаторов, кабелей. Более того, именно системы хранения данных на базе iSCSI являются наиболее популярными для виртуализированных серверов, в силу простоты настройки протокола.

Рисунок 3: Архитектура Storage Area Network

  • Высокая надёжность доступа к данным, находящимся на внешних системах хранения. Независимость топологии SAN от используемых СХД и серверов.
  • Централизованное хранение данных (надёжность, безопасность).
  • Удобное централизованное управление коммутацией и данными.
  • Перенос интенсивного трафика ввода-вывода в отдельную сеть, разгружая LAN.
  • Высокое быстродействие и низкая латентность.
  • Масштабируемость и гибкость логической структуры SAN
  • Возможность организации резервных, удаленных СХД и удаленной системы бэкапа и восстановления данных.
  • Возможность строить отказоустойчивые кластерные решения без дополнительных затрат на базе имеющейся SAN.
  • Более высокая стоимость
  • Сложность в настройке FC-систем
  • Необходимость сертификации специалистов по FC-сетям (iSCSI является более простым протоколом)
  • Более жесткие требования к совместимости и валидации компонентов.
  • Появление в силу дороговизны DAS-«островов» в сетях на базе FC-протокола, когда на предприятиях появляются одиночные серверы с внутренним дисковым пространством, NAS-серверы или DAS-системы в силу нехватки бюджета.

Примеры моделей SAN

В настоящий момент имеется достаточно большой выбор дисковых массивов для построения SAN, начиная от моделей для малых и средних предприятий, такие как серия DELL AX, которые позволяют создавать хранилища емкостью до 60 Тбайт, и заканчивая дисковыми массивами для больших корпораций DELL/EMC серии CX4, они позволяют создать хранилища емкостью до 950 Тб. Есть недорогое решение на основе iSCSI, это PowerVault MD3000i – решение позволяет подключать до 16-32 серверов, в одно устройство можно установить до 15 дисков, и расширить систему двумя полками MD1000, создав массив на 45Тб.

Отдельного упоминания заслуживает система Dell EqualLogic на базе протокола iSCSI. Она позиционируется как СХД масштаба предприятия и сравнима по цене с системами Dell | EMC CX4, с модульной архитектурой портов, поддерживающих как FC протокол, так и iSCSI протокол. Система EqualLogic является одноранговой, т.е каждая дисковая полка имеет активные контроллеры RAID. При подключении этих массивов в единую систему, производительность дискового пула плавно растет с ростом доступного объема хранения данных. Система позволяет создать массивы более 500TB, настраивается менее, чем за час, и не требует специализированных знаний администраторов.

Модель лицензирования также отличается от остальных и уже включает в первоначальную стоимость все возможные опции моментальных копий, репликацию и средства интеграции в различные ОС и приложения. Эта система считается одной из наиболее быстрых систем в тестах для MS Exchange (ESRP).

Типы носителей информации и протокол взаимодействия с СХД

Определившись с типом СХД, который Вам наиболее подходит для решения тех или иных задач, необходимо перейти к выбору протокола взаимодействия с СХД и выбору накопителей, которые будут использоваться в системе хранения.

В настоящий момент для хранения данных в дисковых массивах используются SATA и SAS диски. Какие диски выбрать в хранилище зависит от конкретных задач. Стоит отметить несколько фактов.

SATA II диски:

  • Доступны объемы одного диска до 1 ТБ
  • Скорость вращения 5400-7200 RPM
  • Скорость ввода/вывода до 2,4 Гбит/с
  • Время наработки на отказ примерно в два раза меньше чем у SAS дисков.
  • Менее надежные, чем SAS диски.
  • Дешевле примерно в 1,5 раза, чем SAS-диски.
  • Доступны объемы одного диска до 450 ГБ
  • Скорость вращения 7200 (NearLine), 10000 и 15000 RPM
  • Скорость ввода/вывода до 3,0 Гбит/с
  • Время наработки на отказ в два раза больше чем у SATA II дисков.
  • Более надежные диски.

Важно! В прошлом году начался промышленный выпуск SAS дисков с пониженной скоростью вращения – 7200 rpm (Near-line SAS Drive). Это позволило повысить объем хранимых данных на одном диске до 1 ТБ и снизить энергопторебление дисков со скоростным интерфейсом. При том, что стоимость таких дисков сравнима со стоимостью дисков SATA II, а надежность и скорость ввода/вывода осталась на уровне SAS дисков.

Таким образом, в настоящий момент стоит действительно серьезно задуматься над протоколами хранения данных, которые вы собираетесь использовать в рамках корпоративной СХД.

До недавнего времени основными протоколами взаимодействия с СХД являлись – FibreChannel и SCSI. Сейчас на смену SCSI, расширив его функционал, пришли протоколы iSCSI и SAS. Давайте ниже рассмотрим плюсы и минусы каждого из протоколов и соответствующих интерфейсов подключения к СХД.

Протокол Fibre Channel

На практике современный Fibre Channel (FC) имеет скорости 2 Гбит/Сек (Fibre Channel 2 Gb), 4 Гбит/Сек (Fibre Channel 4 Gb) full- duplex или 8 Гбит/Сек, то есть такая скорость обеспечивается одновременно в обе стороны. При таких скоростях расстояния подключения практически не ограничены – от стандартных 300 метров на самом «обычном» оборудовании до нескольких сотен или даже тысяч километров при использовании специализированного оборудования. Главный плюс протокола FC – возможность объединения многих устройств хранения и хостов (серверов) в единую сеть хранения данных (SAN). При этом не проблема распределенности устройств на больших расстояниях, возможность агрегирования каналов, возможность резервирования путей доступа, «горячего подключения» оборудования, большая помехозащищенность. Но с другой стороны мы имеем высокую стоимость, и высокую трудоемкость инсталляции и обслуживания дисковых массивов использующих FC.

Важно! Следует разделять два термина протокол Fibre Channel и оптоволоконный интерфейс Fiber Channel. Протокол Fibre Сhannel может работать на разных интерфейсах — и на оптоволоконном соединении с разной модуляцией, и на медных соединениях.

  • Гибкая масштабируемость СХД;
  • Позволяет создавать СХД на значительных расстояниях (но меньших, чем в случае iSCSI протокола; где, в теории, вся глобальная IP сеть может выступать носителем.
  • Большие возможности резервирования.
  • Высокая стоимость решения;
  • Еще более высокая стоимость при организации FC-сети на сотни или тысячи километров
  • Высокая трудоемкость при внедрении и обслуживании.

Важно! Помимо появления протокола FC8 Гб/c, ожидается появление протокола FCoE (Fibre Channel over Ethernet), который позволит использовать стандартные IP сети для организации обмена пакетами FC.

Протокол iSCSI

Протокол iSCSI (инкапсуляция SCSI пакетов в протокол IP) позволяет пользователям создать сети хранения данных на базе протокола IP с использованием Ethernet-инфраструктуры и портов RJ45. Таким образом, протокол iSCSI дает возможность обойти те ограничения, которыми характеризуются хранилища данных с непосредственным подключением, включая невозможность совместного использования ресурсов через серверы и невозможность расширения емкости без отключения приложений. Скорость передачи на данный момент ограничена 1 Гб/c (Gigabit Ethernet), но данная скорость является достаточной для большинства бизнес-приложений масштаба средних предприятий и это подтверждают многочисленные тесты. Интересно то, что важна не столько скорость передачи данных на одном канале, сколько алгоритмы работы RAID контроллеров и возможность агрегации массивов в единый пул, как в случае с DELL EqualLogic, когда используются по три 1Гб порта на каждом массиве, и идет балансировка нагрузки среди массивов одной группы.

Важно отметить, что сети SAN на базе протокола iSCSI обеспечивают те же преимущества, что и сети SAN с использованием протокола Fibre Channel, но при этом упрощаются процедуры развертывания и управления сетью, и значительно снижаются стоимостные затраты на данную СХД.

  • Высокая доступность;
  • Масштабируемость;
  • Простота администрирования, так как используется технология Ethernet;
  • Более низкая цена организации SAN на протоколе iSCSI, чем на FC.
  • Простота интеграции в среды виртуализации
  • Есть определенные ограничения по использованию СХД с протоколом iSCSI с некоторыми OLAP и OLTP приложениями, с системами Real Time и при работе с большим числом видеопотоков в HD формате
  • Высокоуровневые СХД на базе iSCSI, также как и CХД c FC-протоколом, требуют использования быстрых, дорогостоящих Ethernet-коммутаторов
  • Рекомендуется использование либо выделенных Ethernet коммутаторов, либо организация VLAN для разделения потоков данных. Дизайн сети является не менее важной частью проекта, чем при разработке FC-сетей.

Важно! В скором времени производители обещают выпустить в серийное производство SAN на базе протокола iSCSI с поддержкой скоростей передачи данных до 10 Гб/c. Также готовится финальная версия протокола DCE (Data Center Ethernet), массовое появление устройств, поддерживающих протокол DCE, ожидается к 2011 году.

C точки зрения используемых интерфейсов, протокол iSCSI задействует интерфейсы Ethernet 1Гбит/C, а ими могут быть как медные, так оптоволоконные интерфейсы при работе на больших расстояниях.

Протокол SAS

Протокол SAS и одноименный интерфейс разработаны для замены параллельного SCSI и позволяет достичь более высокой пропускной способности, чем SCSI. Хотя SAS использует последовательный интерфейс в отличие от параллельного интерфейса, используемого традиционным SCSI, для управления SAS-устройствами по-прежнему используются команды SCSI. SAS позволяет обеспечить физическое подключение между массивом данных и несколькими серверами на небольшие расстояния.

  • Приемлемая цена;
  • Легкость консолидации хранилищ – хотя СХД на базе SAS не может подключаться к такому количеству хостов (серверов), как SAN конфигурации которые используют протоколы FC или iSCSI, но при использовании протокола SAS не возникает трудностей с дополнительным оборудованием для организации общего хранилища для нескольких серверов.
  • Протокол SAS позволяет обеспечить большую пропускную способность с помощью 4 канальных соединений внутри одного интерфейса. Каждый канал обеспечивает 3 Гб/c , что позволяет достичь скорости передачи данных 12 Гб/с (в настоящий момент это наивысшая скорость передачи данных для СХД).
  • Ограниченность досягаемости – длинна кабеля не может превышать 8 метров. Тем самым хранилища с подключением по протоколу SAS, будут оптимальны только тогда когда серверы и массивы будут расположены в одной стойке или в одной серверной;
  • Количество подключаемых хостов (серверов) как правило, ограничено несколькими узлами.

Важно! В 2009 году ожидается появление технологии SAS со скоростью передачи данных по одному каналу – 6 Гбит/c, что позволит значительно увеличить привлекательность использования данного протокола.

Сравнение протоколов подключения СХД

Ниже приведена сводная таблица сравнения возможностей различных протоколов взаимодействия с СХД.

Параметр

Протоколы подключения СХД

Архитектура SCSI команды инкапсулируются в IP пакет и передаются через Ethernet, последовательная передача Последовательная передача SCSI команд Коммутируемая
Растояние между дисковым массивом и узлом (сервер или свитч) Ограничено лишь расстоянием IP cетей. Не более 8 метров между устройствами. 50.000 метров без использования специализрованных рипитеров
Масштабируемость Миллионы устройств – при работе по протоколу IPv6. 32 устройства 256 устройств
16 миллионов устройств, если использовать FC-SW (fabric switches) архитектура
Производительность 1 Гб/с (планируется развитие до 10 Гб/с) 3 Гб/с при использовании 4х портов, до 12 Гб/с (в 2009 году до 6 Гб/с по одному порту) До 8 Гб/с
Уровень вложений (затрат на внедрение) Незначительный – используется Ethernet Средний Значительный

Таким образом, представленные решения на первый взгляд достаточно четко разделяются по соответствию требованиям заказчиков. Однако на практике все не так однозначно, включаются дополнительные факторы в виде ограничений по бюджетам, динамики развития организации (и динамики увеличения объема хранимой информации), отраслевая специфика и т.д.

Эволюционировали от простейших карт и лент с дырочками, использовавшихся для хранения программ и данных, до накопителей на твердом теле. На этом пути было создано множество непохожих друг на друг устройств – это и магнитные ленты, и барабаны, и диски, и оптические диски. Часть из них осталась в прошлом: это перфорированные носители, магнитные барабаны, гибкие (флоппи) диски и оптические диски, а другие живут и будут жить долго. То, что сегодня ушло, можно посмотреть и поностальгировать в музее устаревших медийных технологий Museum Of Obsolete Media . И в то же время, казалось бы обреченное, остается. В свое время предсказывали конец магнитным лентам, однако сегодня их существованию ничто не мешает, точно то же самое относится и к жестким вращающимся дискам (HDD), пророчества об их конце лишены какого-либо основания, они достигли такого уровня совершенства, что за ними сохранится их собственная ниша, невзирая ни на какие новации.

На нынешнем многоуровневом пейзаже СХД присутствуют ленточные библиотеки для резервного копирования и архивации, быстрые и медленные диски HDD, твердотельные диски SSD на флэш-памяти, мимикрирующие (интерфейсы, форм-фактор) под HDD прежде всего для согласования с существующим программным обеспечением и конструктивами, а также новейшие флэш-накопители в формате карт, подключаемых по интерфейсу NVMe. Эта картина сложилась под влиянием нескольких факторов, среди которых схема Джона фон Неймана, которая делит память на оперативную, непосредственно доступную процессору, и вторичную, предназначенную для хранения данных. Это деление укрепилось после того, как на смену сохраняющей свое текущее состояние ферритовой памяти пришла полупроводниковая, требующая загрузки программ для начала работы. И конечно же влияет удельная стоимость хранения, чем быстрее устройство, тем эта стоимость выше, поэтому в обозримом будущем останется место и для лент, и для дисков. Подробнее об эволюции СХД .

Как хранили данные раньше

Носители данных, использующие перфорацию

Перфокарты

До появления компьютеров на протяжении столетий в простейших устройствах с программным управлением (ткацкие станки, шарманки, часы-карильоны) использовали перфорированные носители самых разных форматов и размеров и барабаны со штифтами. Сохраняя этот принцип записи, Герман Холлерит, основатель компании TMC, позже вошедшей в IBM , сделал открытие. Именно, в 1890 году он осознал, как можно использовать перфокарты для записи и обработки данных. Он реализовал эту идею при обработке статистических данных, полученных в ходе переписи населения, а позже перенес ее и в другие приложения, чем обеспечил благополучие IBM на десятилетия вперед.

Почему именно карты? Их можно сортировать и к ним может быть обеспечен, условно говоря, «прямой доступ» с тем, чтобы на специальном устройстве-табуляторе, следуя несложной программе, частично автоматизировать обработку данных.

Формат карт менялся, и с 20-х годов международным стандартом стали 80-колонные карты. Монополия на них до начала 60-х принадлежала IBM.

Эти простые картонки с прямоугольными отверстиями оставались доминирующим носителем данных на протяжении нескольких десятилетий, они производились миллиардами. Об объемах потребления карт можно судить хотя бы по одному примеру Центра расшифровки немецких радиограмм в Блечли Парке: неделя работы – 2 миллиона карт, это среднего размера грузовик! Послевоенный бизнес тоже строился на хранении данных на картах. Говоря о перфокартах, следует помнить, что они использовались в Германии для сбора данных о людях, подлежащих уничтожению.

Перфоленты

Казалось бы, перфоленты – более практичные носители, но в бизнесе они практически не использовались, хотя устройства для ввода и вывода были существенно проще и легче. Их распространению мешал последовательный доступ, меньшая емкость и низкие скорости ввода и вывода, сложность архивации. Узкие 5-колонные перфоленты с 1857 года использовали для подготовки и последующей передачи данных по телеграфу, с тем чтобы не ограничить скорость ввода физическими возможностями оператора и тем самым лучше использовать пропускную способность канала. Широкие 24-колонные перфоленты были созданы для записи программ в электромеханическом калькуляторе Harvard Mark I в 1937 году. Как носитель, не подверженный воздействию разного электромагнитного и гамма-изучения, перфоленты широко использовались в качестве бортовых устройств, они до сих пор используются в некоторых оборонных системах.

Магнитные ленты

Способ записи звука на катушечный магнитный носитель, сначала на проволоку был предложен в 1928 году. Магнитофон такого типа использовался в UNIVAC-1. Началом истории компьютерных магнитных лент считается IBM Model 726, входившая в состав компьютера IBM Model 701. Ширина ленты для IBM Model 726 и других устройств того времени была равна одному дюйму, но такие ленты оказались неудобны в эксплуатации. Из-за их большой массы требовались мощные приводы, поэтому вскоре им на смену пришли полудюймовые «открытые ленты» (open reel), в которых перемотка осуществлялась с одной бобины на другую (reel-to-reel). Они имели три плотности записи 800, 1600 и 6250. Такие ленты со съемными кольцами для защиты от записи стали стандартом для архивирования данных до конца 80-х годов.

В Model 726 использовали катушки от кинопленки, соответственно ширина ленты оказалось равной одному дюйму, а диаметр бобины – 12 дюймам. Model 726 была способна сохранять 1,4 Мбайт данных, плотность 9-дорожечной записи составляла 800 бит на дюйм; при движении ленты со скоростью 75 дюймов в секунду в компьютер передавалось 7500 байт в секунду. Сама магнитная лента для Model 726 была разработана компанией 3M (теперь Imation).

Довольно скоро от дюймовых лент отказались, из-за их веса при работе в старт-стопном режиме требовались слишком мощные приводы и вакуумные карманы, и на длительный период установилось почти монопольное господство полудюймовых «открытых лент» (open reel), в которых перемотка осуществлялась с одной бобины на другую (reel-to-reel). Плотность записи повысилась с 800 до 1600 и даже 6250 бит на дюйм. Эти ленты со съемными кольцами для защиты от записи были популярны на компьютерах типа ЕС и СМ ЭВМ. полудюймовых «открытых лент» (open reel), в которых перемотка осуществлялась с одной бобины на другую (reel-to-reel). Плотность записи повысилась с 800 до 1600 и даже 6250 бит на дюйм. Эти ленты со съемными кольцами для защиты от записи были популярны на компьютерах типа ЕС и СМ ЭВМ.

Стимулом к дальнейшему развитию стало то, что в середине 80-х емкости жестких дисков стали измеряться сотнями мегабайт или даже гигабайтами поэтому для них понадобились накопители резервирования, соответствующей емкости. Неудобства открытых лент были понятны, даже в быту кассетные магнитофоны быстро вытеснили катушечные. Естественный переход к картриджам происходил двумя путями: один – создавать специализированные устройства, ориентированные на компьютеры (по линейной технологии): второй – обратиться к технологиям, изобретенным для видеозаписи и аудиозаписи с вращающимися головками (по винтовой технологии). С тех пор сложилось разделение на два лагеря, которое придает рынку накопителей неповторимую специфику.

За тридцать лет было разработано несколько десятков стандартов картриджей, наиболее распространенный сегодня стандарт LTO (Linear Tape-Open), в процессе которых картриджи совершенствовались, повышалась их надежность, емкость, скорость передачи и другие эксплуатационные характеристики. Современный картридж – это сложное устройство, снабженное процессором и флэш-памятью.

Переходу на картриджи способствовало то, что сейчас ленты работают исключительно в потоковом режиме. Картриджи используются либо в автономных устройствах, либо в составе ленточных библиотек. Первой роботизированную библиотеку на 6 тыс. картриджей выпустила компания StorageTek в 1987 году.

Аналитики и производители дисков не раз предрекали лентам кончину. Известен лозунг «Tapes must die», но они живы и будут жить долго, потому что рассчитаны на многолетнее хранение больших архивов. Размер бизнеса, связанного с производством лентопротяжек, лент и ленточных библиотек в 2017 году оценивался примерно в $5 млрд. И чем больше становятся объемы информации, которые можно сохранить на жестких дисках, тем больше потребность в архивировании и создании резервных копий. На чем? Разумеется, на лентах: экономически оправданной по стоимости хранения альтернативы магнитным лентам пока не найдено. Нынешнее 8-е поколение стандарта LTO позволяет штатно сохранить до 12 Тб, а в компрессированном режиме 30 Тб, перспективе эти цифры возрастут на порядок и более, при смене поколений повышаются не только количественные показатели, но и другие эксплуатационные характеристики.

Магнитный барабан

Временным способом для разрешения противоречий между технологией последовательной записи на ленту и необходимостью прямого доступа к данным на внешнем устройстве стал магнитный барабан, точнее цилиндр с неподвижными головками. Его изобрел австриец Густав Тучек в 1932 году

Магнитным является не барабан, у которого, как известно, рабочей поверхностью служит днище, а цилиндр с нанесенным на его боковую поверхность ферримагнитным покрытием, разделенным на дорожки, а они, в свою очередь, делятся на секторы. Над каждой из дорожек размещена собственная головка чтения/записи, причем все головки могут работать одновременно, то есть операции чтения/записи осуществляются в параллельном режиме.

Барабаны использовались не только в качестве периферийного устройства. До перехода на ферритовые сердечники оперативная память была чрезвычайно дорогой и ненадежной, поэтому в ряде случаев барабаны играли роль оперативной памяти, были даже компьютеры, называвшиеся барабанными. Обычно магнитные барабаны использовались для оперативной (часто изменяемой) или важной информации, к которой был нужен быстрый доступ. В условиях ограничений на размер оперативной памяти из-за ее дороговизны на них хранилась копия операционной системы, записывались промежуточные результаты выполнения программ. На барабанах впервые была реализована процедура свопинга, представляющая виртуализацию памяти за счет пространства на барабане, а позже и на диске.

Накопители на магнитных барабанах имели емкость меньше, чем диски, но работали быстрее, потому что в отличие от дисков в них головки неподвижны, что исключает время, требуемое для подвода к нужной дорожке.

Барабаны активно использовались вплоть до начала 80-х годов, некоторое время они жили параллельно с дисками. Барабанами комплектовалась ЭВМ БЭСМ 6 и ее современники. Из открытых источников известно, что последние барабаны простояли в системах управления ракетами Минитмэн до середины 90-х годов.

Гибкие диски

Активная жизнь гибких (floppy) дисков растянулась на 30 лет с конца семидесятых до конца девяностых. Они оказались чрезвычайно востребованными в связи тем, что ПК появились раньше, чем у пользователей появилась возможность передачи данных по сети. В этих условия флоппики служили не только по прямому назначению для хранения резервных копий, но, пожалуй, в большей степени для обмена данными между пользователями, вот почему их еще называют sneaker, как кроссовки, типичную обувь программистов. Обмениваясь флоппиками, они создавали своего рода сеть – sneakernet.

Существовало 3 основных типа дисков и множество различных модификаций. Флопии-диски диаметром 8 дюймов были созданы в 1967 году в IBM , они задумывались как устройство первоначальной загрузки (bootstrap) для мэйнфреймов IBM/370 на замену более дорогой постоянной памяти (non-volatile read-only memory), ею комплектовалось предшествующее поколение IBM/360. Однако, осознав коммерческую ценность новинки, в 1971 IBM превратила флоппи в самостоятельный продукт, а в 1973 году руководитель разработки Алан Шугарт создал компанию Shugart Associates, ставшую ведущим производителей 8-ми дюймовых дисков с максимальной емкостью 1,2 Мбайта. Эти большие диски использовали на ПК, выпускавшихся до появления IBM XT. Особую популярность этот тип дискет получил благодаря операционной системе CP/M Гарри Килдала.

Что же касается дискет с диаметром 5,25 дюйма, то их появление напоминает анекдот о Николае II, который дольно своеобразно объясняет увеличенную ширину российской железнодорожной колеи по сравнению с европейской. В нашем случае Эн Ванг, хозяин компании Wang Laboratories, встретился в баре с выходцами из Shugart Associates, которые предложили сделать для его компьютеров более дешевый дисковод, но они не могли решиться на конкретный диаметр. Тогда Ванг взял коктейльную салфетку и сказал, что ему кажется, что размер должен быть таким. Пятидюймовые диски емкостью 360 и 720 Кб выпускали до конца девяностых годов, они были современниками компьютеров IBM XT и IBM AT, операционных систем MS-DOS и DR-DOS, верно служа становлению новой отрасли.

Предложенный в 1983 году Sony альтернативный картридж имел размер 90,0 мм × 94,0 мм, но его по традиции стали называть 3,5 дюймовым. В американской профессиональной среде он зовется стиффи (stiffy disk, перевод стоит посмотреть в словаре). После ряда усовершенствований в 1987 году был принят отраслевой стандарт 3,5-inch HD (High Density) с емкостью 1,44 Мб. Поначалу такими дисками комплектовали IBM PS/2 и Macintosh IIx, а позже он стал универсальным стандартом для PC и Macintosh. Попытки сделать во второй половине девяностых диски большей емкости Extended Density (ED) 2,88 Мб, а также казавшиеся перспективными магнитооптические Floptical disk 25 Мб, SuperDisk 120-240 Мб и HiFD 150-240 Мб рыночного успеха не имели.

Почему возникла необходимость в СХД

Из проведенного исследования IDC Perspectives следует, что хранение данных занимает второе место среди расходов на ИТ и составляет примерно 23% от всех расходов. По информации The InfoPro, Wave 11 «прирост расходов на СХД в средней компании Fortune 1000 превышает 50% в год».

По общему мнению аналитиков, в организациях по всему миру ежеминутно вырастают объемы хранимой и обрабатываемой информации. Уникальная информация становится все дороже, ее объём каждый год увеличивается многократно, а её хранение требует затрат. Ввиду этого организации стремятся не только формировать развитие инфраструктуры хранения данных, но и изыскивать возможности улучшения и повышения экономической эффективности СХД: снижения энергопотребления, расходов на сервис, общей стоимости владения и закупки систем резервного копирования и хранения.

Рост объемов данных, возросшие требования к надежности хранения и быстродействию доступа к данным делают необходимым выделение средств хранения в отдельную подсистему вычислительного комплекса (ВК). Возможность доступа к данным и управления ими является необходимым условием для выполнения бизнес-процессов . Безвозвратная потеря данных подвергает бизнес серьезной опасности. Утраченные вычислительные ресурсы можно восстановить, а утраченные данные, при отсутствии грамотно спроектированной и внедренной системы резервирования , уже не подлежат восстановлению.

Происходит заметное развитие потребности не только в приобретении СХД корпоративными клиентами, но и в строгом учете, аудите и мониторинге использования дорогостоящих ресурсов. Нет ничего хуже остановки бизнес-процессов из-за невозможности своевременно получить необходимые данные (или полной их утраты), а ведь это может повлечь за собой необратимые последствия.

Факторы, способствующие развитию СХД

Основным фактором был рост конкуренции и усложнение ее характера во всех сегментах рынка. В Западной Европе эти явления можно было наблюдать и раньше, а в Восточной Европе - в последние пять лет. Пять лет назад у мобильного оператора было 25-25 млн зарегистрированных SIM-карт, а сегодня - 50-70 млн. Таким образом, мобильной связью от этих компаний обеспечен практически каждый житель страны, а ведь есть еще региональные операторы. Вот реальный уровень конкуренции: на рынке не осталось никого, кто не имел бы мобильного телефона. И теперь операторы не могут экстенсивно расти за счет продажи своих продуктов тем, у кого аналогичных продуктов еще нет. Им нужны клиенты, которые работают с конкурентами, и необходимо понять, как их получить. Надо разобраться в их поведении, в том, чего они хотят. Чтобы извлечь полезную информацию из доступных данных, необходимо поместить их в хранилище .

Еще один фактор - появление на рынке множества компаний, которые предлагают свои решения для поддержки бизнеса предприятий: ERP , биллинговые системы , системы поддержки принятия решений и т. д. Все они позволяют собирать детальные данные самого разного характера в огромных объемах. При наличии в организации развитой ИТ-инфраструктуры эти данные можно собрать вместе и проанализировать их.

Следующий фактор - технологического характера. До некоторого времени производители приложений самостоятельно разрабатывали разные версии своих решений для разных серверных платформ или предлагали открытые решения. Важной для отрасли технологической тенденцией стало создание адаптируемых платформ для решения различных аналитических задач, которые включают аппаратную составляющую и СУБД . Пользователей уже не волнует, кто сделал для их компьютера процессор или оперативную память, - они рассматривают хранилище данных как некую услугу. И это важнейший сдвиг в сознании.

Технологии, которые позволяют использовать хранилища данных для оптимизации операционных бизнес-процессов практически в реальном времени не только для высококвалифицированных аналитиков и топ-менеджеров, но и для сотрудников фронт-офиса, в частности для сотрудников офисов продаж и контактных центров. Принятие решений делегируется сотрудникам, стоящим на более низких ступенях корпоративной лестницы. Необходимые им отчеты, как правило, просты и кратки, но их требуется очень много, а время формирования должно быть невелико.

Сферы применения СХД

Традиционные хранилища данных можно встретить повсеместно. Они предназначены для формирования отчетности, помогающей разобраться с тем, что произошло в компании. Однако это первый шаг, базис.

Людям становится недостаточно знать, что произошло, им хочется понять, почему это случилось. Для этого используются инструменты бизнес-аналитики, которые помогают понять то, что говорят данные.

Вслед за этим приходит использование прошлого для предсказания будущего, построение прогностических моделей: какие клиенты останутся, а какие уйдут; какие продукты ждет успех, а какие окажутся неудачными и т.д.

Некоторые организации уже находятся на стадии, когда хранилища данных начинают использовать для понимания того, что происходит в бизнесе в настощее время. Поэтому следующий шаг - это «активация» фронтальных систем при помощи решений, основанных на анализе данных, зачастую в автоматическом режиме.

Объемы цифровой информации растут лавинообразно. В корпоративном секторе этот рост вызван, с одной стороны, ужесточением регулирования и требованием сохранять все больше информации, относящейся к ведению бизнеса. С другой стороны, ужесточение конкуренции требует все более точной и подробной информации о рынке, клиентах, их предпочтениях, заказах, действиях конкурентов и т.д .

В государственном секторе рост объемов хранимых данных поддерживает повсеместный переход к межведомственному электронному документообороту и создание ведомственных аналитических ресурсов, основой которых являются разнообразные первичные данные.

Не менее мощную волну создают и обычные пользователи, которые выкладывают в интернет свои фотографии, видеоролики и активно обмениваются мультимедийным контентом в социальных сетях.

Требования к СХД

Группа компаний ТИМ в 2008 году провела опрос среди клиентов с целью выяснить, какие характеристики наиболее важны для них при выборе СХД . На первых позициях оказались качество и функциональность предлагаемого решения. В то же время расчет совокупной стоимости владения для российского потребителя явление нетипичное. Заказчики чаще всего не до конца осознают какие их ожидают издержки, например, затраты на аренду и оснащение помещения, электроэнергию, кондиционирование, обучение и зарплату квалифицированного персонала и проч.

Когда возникает необходимость приобрести СХД, максимум, что оценивает для себя покупатель, это прямые затраты, проходящие через бухгалтерию на приобретение данного оборудования. Впрочем, цена по степени важности оказалась на девятом месте из десяти. Безусловно, заказчики учитывают возможные трудности, связанные с обслуживанием техники. Обычно их избежать помогают пакеты расширенной гарантийной поддержки, которые обычно предлагают в проектах.

Надёжность и отказоустойчивость. В СХД предусмотрено полное или частичное резервирование всех компонент – блоков питания, путей доступа, процессорных модулей, дисков, кэша и т.д. Обязательно наличие системы мониторинга и оповещения о возможных и существующих проблемах.

Доступность данных. Обеспечивается продуманными функциями сохранения целостности данных (использование технологии RAID, создание полных и мгновенных копий данных внутри дисковой стойки, реплицирование данных на удаленную СХД и т.д.) и возможностью добавления (обновления) аппаратуры и программного обеспечения в горячем режиме без остановки комплекса;

Средства управления и контроля. Управление СХД осуществляется через web-интерфейс или командную строку, есть функции мониторинга и несколько вариантов оповещения администратора о неполадках. Доступны аппаратные технологии диагностики производительности.

Производительность. Определяется числом и типом накопителей, объёмом кэш-памяти, вычислительной мощностью процессорной подсистемы, числом и типом внутренних и внешних интерфейсов, а также возможностями гибкой настройки и конфигурирования.

Масштабируемость. В СХД обычно присутствует возможность наращивания числа жёстких дисков, объёма кэш-памяти, аппаратной модернизации и расширения функционала с помощью специального ПО. Все перечисленные операции производят без значительного переконфигурирования и потерь функциональности, что позволяет экономить и гибко подходить к проектированию ИТ-инфраструктуры .

Типы СХД

Дисковые СХД

Используют для оперативной работы с данными, а также для создания промежуточных резервных копий.

Существуют следующие виды дисковых СХД :

  • СХД для рабочих данных (высокопроизводительное оборудование);
  • СХД для резервных копий (дисковые библиотеки);
  • СХД для долговременного хранения архивов (системы CAS).

Ленточные СХД

Предназначены для создания резервных копий и архивов.

Существуют следующие виды ленточных СХД :

  • отдельные накопители;
  • автозагрузчики (один накопитель и несколько слотов для лент);
  • ленточные библиотеки (более одного накопителя, множество слотов для лент).

Варианты подключений СХД

Для подключения устройств и жестких дисков внутри одного хранилища используются различные внутренние интерфейсы:

Наиболее распространенные внешние интерфейсы подключения СХД :

Популярный интерфейс межузлового кластерного взаимодействия Infiniband теперь также используется для доступа к СХД.

Варианты топологий СХД

Традиционный подход к хранилищам данных состоит в непосредственном подключении серверов к системе хранения Direct Attached Storage, DAS (Direct Attached Storage). Помимо Direct Attached Storage, DAS , существуют устройства хранения данных, подключаемые к сети, - NAS (Network Attached Storage), a также компоненты сетей хранения данных - SAN (Storage Area Networks). И NAS -, и SAN -системы появились в качестве альтернативы архитектуре Direct Attached Storage, DAS . Причем каждое решение разрабатывалось как ответ на растущие требования к системам хранения данных и основывалось на использовании доступных в то время технологиях.

Архитектуры сетевых систем хранения были разработаны в 1990-х гг., и их задачей было устранение основных недостатков систем Direct Attached Storage, DAS . В общем случае сетевые решения в области систем хранения должны были реализовать три задачи: снизить затраты и сложность управления данными, уменьшить трафик локальных сетей, повысить степень готовности данных и общую производительность. При этом архитектуры NAS и SAN решают различные аспекты общей проблемы. Результатом стало одновременное сосуществование двух сетевых архитектур, каждая из которых имеет свои преимущества и функциональные возможности.

Системы хранения прямого подключения (DAS)

Программный и аппаратный RAID

Российский рынок СХД

В последние несколько лет российский рынок СХД успешно развивается и растет. Так, в конце 2010 года выручка производителей систем хранения, проданных на российском рынке, превысила $65 млн, что по сравнению со вторым кварталом того же года больше на 25% и на 59% 2009-го. Общая емкость проданных СХД составила примерно 18 тыс. терабайт, что является показателем роста больше чем на 150% в год.

Основные этапы проектов создания хранилищ данных

Хранилище данных - очень сложный объект. Одним из основных условий для его создания является наличие грамотных специалистов, понимающих, что они делают, - не только на стороне поставщика, но и на стороне клиента. Потребление СХД становится неотъемлемой частью внедрения комплексных инфраструктурных решений. Как правило, речь идет о внушительных инвестициях на 3-5 лет, и заказчики рассчитывают, что в течение всего срока эксплуатации система в полной мере будет отвечать предъявляемым со стороны бизнеса требованиям.

Далее, необходимо обладать технологиями создания хранилищ данных. Если вы начали создавать хранилище и разрабатываете для него логическую модель, то у вас должен быть словарь, определяющий все основные понятия. Даже такие расхожие понятия, как «клиент» и «продукт», имеют сотни определений. Только получив представление о том, что означают те или иные термины в данной организации, можно определить источники необходимых данных, которые следует загрузить в хранилище.

Теперь можно приступить к созданию логической модели данных. Это критически важный этап проекта. Надо от всех участников проекта создания хранилища данных добиться согласия относительно актуальности этой модели. По завершении этой работы становится понятно, что в действительности нужно клиенту. И только потом имеет смысл говорить о технологических аспектах, например о размерах хранилища. Клиент оказывается лицом к лицу с гигантской моделью данных, которая содержит тысячи атрибутов и связей.

Необходимо постоянно помнить, что хранилище данных не должно быть игрушкой для ИТ-департамента и объектом затрат для бизнеса. И в первую очередь хранилище данных должно помогать клиентам решать их самые критичные проблемы. Например, помочь телекоммуникационным компаниям предотвратить утечку клиентов. Для решения проблемы необходимо заполнить определенные фрагменты большой модели данных, и затем помогаем выбрать приложения, которые помогут решить эту проблему. Это могут быть очень несложные приложения, скажем Excel . Первым делом стоит попытаться решить основную проблему с помощью этих инструментов. Пытаться заполнить всю модель сразу, использовать все источники данных будет большой ошибкой. Данные в источниках необходимо тщательно проанализировать, чтобы обеспечить их качество. После успешного решения одной-двух проблем первостепенной важности, в ходе которого обеспечено качество необходимых для этого источников данных, можно приступать к решению следующих проблем, постепенно заполняя другие фрагменты модели данных, а также используя заполненные ранее фрагменты.

Еще одна серьезная проблема - модернизация СХД. Зачастую СХД, приобретенная три-пять лет назад, уже не справляется с растущими объемами данных и требованиями к скорости доступа к ним, поэтому приобретается новая система, на которую переносятся данные с прежней. По сути, заказчики, повторно платят за объемы хранения, требуемые для размещения данных и, кроме того, несут расходы на установку новой СХД и перенос данных на нее. При этом прежние СХД, как правило, еще не настолько устаревшие, чтобы отказываться от них полностью, поэтому заказчики пытаются приспособить их под другие задачи.

2009

Стремительная эволюция ежегодно вносит серьезные изменения в основные тренды развития СХД . Так, в 2009 году во главу угла ставилась способность экономично распределять ресурсы (Thin Provisioning), последние несколько лет проходят под знаком работы СХД в "облаках". Спектр предлагаемых систем отличается разнообразием: огромное количество представленных моделей, различные варианты и комбинации решений от начального уровня до Hi-End класса, решения под ключ и покомпонентная сборка с применением самой современной начинки, программно-аппаратные решения от российских производителей.

Стремление к сокращению расходов на ИТ-инфраструктуру требует постоянного баланса между стоимостью ресурсов СХД и ценностью данных, которые на них хранятся в данный момент времени. Для принятия решения о том, как наиболее эффективно размещать ресурсы на программных и аппаратных средствах, специалисты ЦОД руководствуются не только подходами ILM и DLM, но и практикой многоуровнего хранения данных. Каждой единице информации, подлежащей обработке и хранению, присваиваются определенные метрики. В их числе степень доступности (скорость предоставления информации), важность (стоимость потери данных в случае аппаратного и программного сбоя), период, через который информация переходит на следующую стадию.

Пример разделения систем хранения в соответствии с требованиями к хранению и обработке информации по методике многоуровневого хранения данных.

Вместе с тем, возросли требования к производительности транзакционных систем, что предполагает увеличение количества дисков в системе и соответственно выбор СХД более высокого класса. В ответ на этот вызов производители снабдили системы хранения новыми твердотельными дисками, превосходящими прежние по производительности более чем в 500 раз на `коротких` операциях чтения-записи (характерных для транзакционных систем).

Популяризация облачной парадигмы способствовала повышению требований к производительности и надежности СХД, поскольку в случае отказа или потери данных пострадают не один-два подключенных напрямую сервера - произойдет отказ в обслуживании для всех пользователей облака. В силу той же парадигмы проявилась тенденция к объединению устройств разных производителей в федерацию. Она создает объединенный пул ресурсов, которые предоставляются по требованию с возможностью динамического перемещения приложений и данных между географически разнесенными площадками и поставщиками услуг.

Определенный сдвиг отмечен в 2011 году в области управления `Большими данными` . Раньше подобные проекты находись на стадии обсуждения, а теперь они перешли в стадию реализации, пройдя весь путь от продажи до внедрения.

На рынке намечается прорыв, который уже случился на рынке серверов, и, возможно, уже в 2012 году мы увидим в массовом сегменте СХД, поддерживающие дедупликацию и технологию Over Subscribing . В итоге, как и в случае серверной виртуализации, это обеспечит масштабную утилизацию емкости СХД.

Дальнейшее развитие оптимизации хранения будет заключаться в совершенствовании методов сжатия данных. Для неструктурированных данных, на которые приходится 80% всего объема, коэффициент сжатия может достигать нескольких порядков. Это позволит существенно снизить удельную стоимость хранения данных для современных SSD

  • Андрей Захаров, Основные системы хранения данных и их особенности
  • Журнал Upgrade4_08_05


  • Есть вопросы?

    Сообщить об опечатке

    Текст, который будет отправлен нашим редакторам: