OLAP в финансовом управлении. Многомерное представление данных. Общая схема организации хранилища данных. Характеристики, типы и основные отличия технологий OLAP и OLTP. Схемы звезда и снежинка. Агрегирование В olap анализе используются таблицы

Целью курсовой работы является изучение технологии OLAP, понятие ее реализации и структуры.

В современном мире компьютерные сети и вычислительные системы позволяют анализировать и обрабатывать большие массивы данных.

Большой объем информации сильно усложняет поиск решений, но дает возможность получить намного точнее расчеты и анализ. Для решения такой проблемы существует целый класс информационных систем, выполняющих анализ. Такие системы называют системами поддержки принятия решений (СППР) (DSS, Decision Support System).

Для выполнения анализа СППР должна накапливать информацию, обладая средствами ее ввода и хранения. Всего можно выделить три основные задачи, решаемые в СППР:

· ввод данных;

· хранение данных;

· анализ данных.

Ввод данных в СППР осуществляется автоматически от датчиков, характеризующих состояние среды или процесса, или человеком-оператором.

Если ввод данных осуществляется автоматически от датчиков, то данные накапливаются по сигналу готовности, возникающему при появлении информации или путем циклического опроса. Если же ввод осуществляется человеком, то они должны предоставлять пользователям удобные средства для ввода данных, проверяющих их на правильность ввода, а так же выполнять необходимые вычисления.

При вводе данных одновременно несколькими операторами, необходимо решать проблемы модификации и параллельного доступа одних и тех же данных.

СППР предоставляет аналитику данные в виде отчетов, таблиц, графиков для изучения и анализа, именно поэтому такие системы обеспечивают выполнение функции поддержки принятия решений.

В подсистемах ввода данных, называемых OLTP (On-linetransactionprocessing), реализуется операционная обработка данных. Для их реализации используют обычные системы управления БД (СУБД).

Подсистема анализа может быть построена на основе:

· подсистемы информационно-поискового анализа на базе реляционных СУБД и статических запросов с использованием языка SQL;

· подсистемы оперативного анализа. Для реализации таких подсистем применяется технология оперативной аналитической обработки данных OLAP, использующая концепцию многомерного представления данных;

· подсистемы интеллектуального анализа. Данная подсистема реализует методы и алгоритмы DataMining .

С точки зрения пользователя, OLAP-системы представляют средства гибкого просмотра информации в различных срезах, автоматического получения агрегированных данных, выполнения аналитических операций свёртки, детализации, сравнения во времени. Благодаря всему этому OLAP-системы являются решением с большими преимуществами в области подготовки данных для всех видов бизнес-отчетности, предполагающих представление данных в различных разрезах и разных уровнях иерархии, таких как, отчетов по продажам, различных форм бюджетов и других. OLAP-системы имеет большие плюсы подобного представления и в других формах анализа данных, в том числе для прогнозирования.

1.2 Определение OLAP -систем

Технология комплексного многомерного анализа данных получила название OLAP. OLAP - это ключевой компонент организации ХД.

OLAP-функциональность может быть реализована различными способами, как простейшими, такими как анализ данных в офисных приложениях, так и более сложными - распределенными аналитическими системами, основанными на серверных продуктах.

OLAP (On-LineAnalyticalProcessing) – технология оперативной аналитической обработки данных использующая средства и методы для сбора, хранения и анализа многомерных данных и целях поддержки процессов принятия решений.

Основное назначение OLAP-систем - поддержка аналитической деятельности, произвольных запросов пользователей-аналитиков. Целью OLAP-анализа является проверка возникающих гипотез.

OLAP (от англ. OnLine Analytical Processing - оперативная аналитическая обработка данных, также: аналитическая обработка данных в реальном времени, интерактивная аналитическая обработка данных) - подход к аналитической обработке данных, базирующийся на их многомерном иерархическом представлении, являющийся частью более широкой области информационных технологий - бизнес-аналитики ().

Каталог OLAP-решений и проектов смотрите в разделе OLAP на TAdviser.

С точки зрения пользователя, OLAP -системы представляют средства гибкого просмотра информации в различных срезах, автоматического получения агрегированных данных, выполнения аналитических операций свёртки, детализации, сравнения во времени. Всё это делает OLAP-системы решением с очевидными преимуществами в области подготовки данных для всех видов бизнес-отчетности, предполагающих представление данных в различных разрезах и разных уровнях иерархии - например, отчетов по продажам, различных форм бюджетов и так далее. Очевидны плюсы подобного представления и в других формах анализа данных, в том числе для прогнозирования.

Требования к OLAP-системам. FASMI

Ключевое требование, предъявляемое к OLAP-системам - скорость, позволяющая использовать их в процессе интерактивной работы аналитика с информацией. В этом смысле OLAP-системы противопоставляются, во-первых, традиционным РСУБД , выборки из которых с типовыми для аналитиков запросами, использующими группировку и агрегирование данных, обычно затратны по времени ожидания и загрузке РСУБД , поэтому интерактивная работа с ними при сколько-нибудь значительных объемах данных сложна. Во-вторых, OLAP-системы противопоставляются и обычному плоскофайловому представлению данных, например, в виде часто используемых традиционных электронных таблиц, представление многомерных данных в которых сложно и не интуитивно, а операции по смене среза - точки зрения на данные - также требуют временных затрат и усложняют интерактивную работу с данными.

При этом, с одной стороны, специфичные для OLAP-систем требования к данным обычно подразумевают хранение данных в специальных оптимизированных под типовые задачи OLAP структурах, с другой сторны, непосредственное извлечение данных из существующих систем в процессе анализа привело бы к существенному падению их производительности.

Следовательно, важным требованием является обеспечение макимально гибкой связки импорта-экспорта между существующими системами, выступающими в качестве источника данных и OLAP-системой, а также OLAP-системой и внешними приложениями анализа данных и отчетности.

При этом такая связка должна удовлетворять очевидным требованиям поддержки импорта-экспорта из нескольких источников данных, осуществления процедур очистки и трансформации данных, унификации используемых классификаторов и справочников. Кроме того, к этим требованиям добавляется необходимость учёта различных циклов обновления данных в существующих информационных системах и унификации требуемого уровня детализации данных. Сложность и многогранность этой проблемы привела к появлению концепции хранилищ данных , и, в узком смысле, к выделению отдельного класса утилит конвертации и преобразования данных - ETL (Extract Transform Load) .

Модели хранения активных данных

Выше мы указали, что OLAP предполагает многомерное иерархическое представление данных, и, в каком-то смысле, противопоставляется базирующимся на РСУБД системам.

Это, однако, не значит, что все OLAP-системы используют многомерную модель для хранения активных, "рабочих" данных системы. Так как модель хранения активных данных оказывает влияние на все диктуемые FASMI-тестом требования, её важность подчёркивается тем, что именно по этому признаку традиционно выделяют подтипы OLAP - многомерный (MOLAP), реляционный (ROLAP) и гибридный (HOLAP).

Вместе с тем, некоторые эксперты, во главе с вышеупомянутым Найджелом Пендсом , указывают, что классификация, базирующаяся на одном критерии недостаточно полна. Тем более, что подавляющее большинство существующих OLAP-систем будут относиться к гибридному типу. Поэтому мы более подробно остановимся именно на моделях хранения активных данных, упомянув, какие из них соответствуют каким из традиционных подтипов OLAP.

Хранение активных данных в многомерной БД

В этом случае данные OLAP хранятся в многомерных СУБД , использующих оптимизированные для такого типа данных конструкции. Обычно многомерные СУБД поддерживают и все типовые для OLAP операции, включая агрегацию по требуемым уровням иерархии и так далее.

Этот тип хранения данных в каком-то смысле можно назвать классическим для OLAP. Для него, впрочем, в полной мере необходимы все шаги по предварительной подготовке данных. Обычно данные многомерной СУБД хранятся на диске, однако, в некоторых случаях, для ускорения обработки данных такие системы позволяют хранить данные в оперативной памяти . Для тех же целей иногда применяется и хранение в БД заранее рассчитанных агрегатных значений и прочих расчётных величин.

Многомерные СУБД , полностью поддерживающие многопользовательский доступ с конкурирующими транзакциями чтения и записи достаточно редки, обычным режимом для таких СУБД является однопользовательский с доступом на запись при многопользовательском на чтение, либо многопользовательский только на чтение.

Среди условных недостатков, характерных для некоторых реализаций многомерных СУБД и базирующихся на них OLAP-систем можно отметить их подверженность непредсказуемому с пользовательской точки зрения росту объёмов занимаемого БД места. Этот эффект вызван желанием максимально уменьшить время реакции системы, диктующим хранить заранее рассчитанные значения агрегатных показателей и иных величин в БД, что вызывает нелинейный рост объёма хранящейся в БД информации с добавлением в неё новых значений данных или измерений.

Степень проявления этой проблемы, а также связанных с ней проблем эффективного хранения разреженных кубов данных, определяется качеством применяемых подходов и алгоритмов конкретных реализаций OLAP-систем.

Хранение активных данных в реляционной БД

Могут храниться данные OLAP и в традиционной РСУБД . В большинстве случаев этот подход используется при попытке «безболезненной» интеграции OLAP с существующими учётными системами, либо базирующимися на РСУБД хранилищами данных . Вместе с тем, этот подход требует от РСУБД для обеспечения эффективного выполнения требований FASMI-теста (в частности, обеспечения минимального времени реакции системы) некоторых дополнительных возможностей. Обычно данные OLAP хранятся в денормализованном виде, а часть заранее рассчитанных агрегатов и значений хранится в специальных таблицах. При хранении же в нормализованном виде эффективность РСУБД в качестве метода хранения активных данных снижается.

Проблема выбора эффективных подходов и алгоритмов хранения предрассчитанных данных также актуальна для OLAP-систем, базирующихся на РСУБД, поэтому производители таких систем обычно акцентируют внимание на достоинствах применяемых подходов.

В целом считается, что базирующиеся на РСУБД OLAP-системы медленнее систем, базирующихся на многомерных СУБД, в том числе за счет менее эффективных для задач OLAP структур хранения данных, однако на практике это зависит от особенностей конкретной системы.

Среди достоинств хранения данных в РСУБД обычно называют большую масштабируемость таких систем.

Хранение активных данных в «плоских» файлах

Этот подход предполагает хранение порций данных в обычных файлах. Обычно он используется как дополнение к одному из двух основных подходов с целью ускорения работы за счет кэширования актуальных данных на диске или в оперативной памяти клиентского ПК.

Гибридный подход к хранению данных

Большинство производителей OLAP-систем, продвигающих свои комплексные решения, часто включающие помимо собственно OLAP-системы СУБД , инструменты ETL (Extract Transform Load) и отчетности, в настоящее время используют гибридный подход к организации хранения активных данных системы, распределяя их тем или иным образом между РСУБД и специализированным хранилищем, а также между дисковыми структурами и кэшированием в оперативной памяти.

Так как эффективность такого решения зависит от конкретных подходов и алгоритмов, применяемых производителем для определения того, какие данные и где хранить , то поспешно делать выводы о изначально большей эффективности таких решений как класса без оценки конкретных особенностей рассматриваемой системы.

OLAP (англ. on-line analytical processing) – совокупность методов динамической обработки многомерных запросов в аналитических базах данных. Такие источники данных обычно имеют довольно большой объем, и в применяемых для их обработки средствах одним из наиболее важных требований является высокая скорость. В реляционных БД информация хранится в отдельных таблицах, которые хорошо нормализованы. Но сложные многотабличные запросы в них выполняются довольно медленно. Значительно лучшие показатели по скорости обработки в OLAP-системах достигаются за счет особенности структуры хранения данных. Вся информация четко организована, и применяются два типа хранилищ данных: измерения (содержат справочники, разделенные по категориям, например, точки продаж, клиенты, сотрудники, услуги и т.д.) и факты (характеризуют взаимодействие элементов различных измерений, например, 3 марта 2010 г. продавец A оказал услугу клиенту Б в магазине В на сумму Г денежных единиц). Для вычисления результатов в аналитическом кубе применяются меры. Меры представляют собой совокупности фактов, агрегированных по соответствующим выбранным измерениям и их элементам. Благодаря этим особенностям на сложные запросы с многомерными данными затрачивается гораздо меньшее время, чем в реляционных источниках.

Одним из основных вендоров OLAP-систем является корпорация Microsoft . Рассмотрим реализацию принципов OLAP на практических примерах создания аналитического куба в приложениях Microsoft SQL Server Business Intelligence Development Studio (BIDS) и Microsoft Office PerformancePoint Server Planning Business Modeler (PPS) и ознакомимся с возможностями визуального представления многомерных данных в виде графиков, диаграмм и таблиц.

Например, в BIDS необходимо создать OLAP-куб по данным о страховой компании, ее работниках, партнерах (клиентах) и точках продаж. Допустим предположение, что компания предоставляет один вид услуг, поэтому измерение услуг не понадобится.

Сначала определим измерения. С деятельности компании связаны следующие сущности (категории данных):

  • Точки продаж
    - Сотрудники
    - Партнеры
Также создаются измерения Время и Сценарий, которые являются обязательными для любого куба.
Далее необходима одна таблица для хранения фактов (таблица фактов).
Информация в таблицы может вноситься вручную, но наиболее распространена загрузка данных с применением мастера импорта из различных источников.
На следующем рисунке представлена последовательность процесса создания и заполнения таблиц измерений и фактов вручную:

Рис.1. Таблицы измерений и фактов в аналитической БД. Последовательность создания
После создания многомерного источника данных в BIDS имеется возможность просмотреть его представление (Data Source View). В нашем примере получится схема, представленная на рисунке ниже.


Рис.2. Представление источника данных (Data Source View) в Business Intellingence Development Studio (BIDS)

Как видим, таблица фактов связана с таблицами измерений посредством однозначного соответствия полей-идентификаторов (PartnerID, EmployeeID и т.д.).

Посмотрим на результат. На вкладке обозревателя куба, перетаскивая меры и измерения в поля итогов, строк, столбцов и фильтров, можем получить представление интересующих данных (к примеру, заключенные сделки по страховым договорам, заключенные определенным работником в 2005 году).

Условия высокой конкуренции и растущей динамики внешней среды диктуют повышенные требования к системам управления предприятия. Развитие теории и практики управления сопровождались появлением новых методов, технологий и моделей, ориентированных на повышение эффективности деятельности. Методы и модели в свою очередь способствовали появлению аналитических систем. Востребованность аналитических систем в России – высокая. Наиболее интересны с точки зрения применения эти системы в финансовой сфере: банки, страховой бизнес, инвестиционные компании. Результаты работы аналитических систем необходимы в первую очередь людям, от решения которых зависит развитие компании: руководителям, экспертам, аналитикам. Аналитические системы позволяют решать задачи консолидации, отчетности, оптимизации и прогнозирования. До настоящего времени не сложилось окончательной классификации аналитических систем, как и нет общей системы определений в терминах, использующихся в данном направлении. Информационная структура предприятия может быть представлена последовательностью уровней, каждый из которых характеризуется своим способом обработки и управления информацией, и имеет свою функцию в процессе управления. Таким образом аналитические системы будут располагаться иерархически на разных уровнях этой инфраструктуры.

Уровень транзакционных систем

Уровень хранилищ данных

Уровень витрин данных

Уровень OLAP – систем

Уровень аналитических приложений

OLAP - системы - (OnLine Analytical Processing, аналитическая обработка в настоящем времени) - представляют собой технологию комплексного многомерного анализа данных. OLAP - системы применимы там, где есть задача анализа многофакторных данных. Являют собой эффективное средство анализа и генерации отчетов. Рассмотренные выше хранилища данных, витрины данных и OLAP - системы относятся к системам бизнес - интеллекта (Business Intelligence, BI).

Очень часто информационно-аналитические системы, создаваемые в расчете на непосредственное использование лицами, принимающими решения, оказываются чрезвычайно просты в применении, но жестко ограничены в функциональности. Такие статические системы называются в литературе Информационными системами руководителя (ИСР), или Executive Information Systems (EIS) . Они содержат в себе предопределенные множества запросов и, будучи достаточными для повседневного обзора, неспособны ответить на все вопросы к имеющимся данным, которые могут возникнуть при принятии решений. Результатом работы такой системы, как правило, являются многостраничные отчеты, после тщательного изучения которых у аналитика появляется новая серия вопросов. Однако каждый новый запрос, непредусмотренный при проектировании такой системы, должен быть сначала формально описан, закодирован программистом и только затем выполнен. Время ожидания в таком случае может составлять часы и дни, что не всегда приемлемо. Таким образом, внешняя простота статических СППР, за которую активно борется большинство заказчиков информационно-аналитических систем, оборачивается катастрофической потерей гибкости.



Динамические СППР, напротив, ориентированы на обработку нерегламентированных (ad hoc) запросов аналитиков к данным. Наиболее глубоко требования к таким системам рассмотрел E. F. Codd в статье , положившей начало концепции OLAP. Работа аналитиков с этими системами заключается в интерактивной последовательности формирования запросов и изучения их результатов.

Но динамические СППР могут действовать не только в области оперативной аналитической обработки (OLAP); поддержка принятия управленческих решений на основе накопленных данных может выполняться в трех базовых сферах .

Сфера детализированных данных. Это область действия большинства систем, нацеленных на поиск информации. В большинстве случаев реляционные СУБД отлично справляются с возникающими здесь задачами. Общепризнанным стандартом языка манипулирования реляционными данными является SQL. Информационно-поисковые системы, обеспечивающие интерфейс конечного пользователя в задачах поиска детализированной информации, могут использоваться в качестве надстроек как над отдельными базами данных транзакционных систем, так и над общим хранилищем данных.

Сфера агрегированных показателей. Комплексный взгляд на собранную в хранилище данных информацию, ее обобщение и агрегация, гиперкубическое представление и многомерный анализ являются задачами систем оперативной аналитической обработки данных (OLAP) . Здесь можно или ориентироваться на специальные многомерные СУБД , или оставаться в рамках реляционных технологий. Во втором случае заранее агрегированные данные могут собираться в БД звездообразного вида, либо агрегация информации может производиться на лету в процессе сканирования детализированных таблиц реляционной БД.

Сфера закономерностей. Интеллектуальная обработка производится методами интеллектуального анализа данных (ИАД, Data Mining) , главными задачами которых являются поиск функциональных и логических закономерностей в накопленной информации, построение моделей и правил, которые объясняют найденные аномалии и/или прогнозируют развитие некоторых процессов.

Оперативная аналитическая обработка данных

В основе концепции OLAP лежит принцип многомерного представления данных. В 1993 году в статье E. F. Codd рассмотрел недостатки реляционной модели, в первую очередь указав на невозможность "объединять, просматривать и анализировать данные с точки зрения множественности измерений, то есть самым понятным для корпоративных аналитиков способом", и определил общие требования к системам OLAP, расширяющим функциональность реляционных СУБД и включающим многомерный анализ как одну из своих характеристик.

Классификация продуктов OLAP по способу представления данных.

В настоящее время на рынке присутствует большое количество продуктов, которые в той или иной степени обеспечивают функциональность OLAP. Около 30 наиболее известных перечислены в списке обзорного Web-сервера http://www.olapreport.com/. Обеспечивая многомерное концептуальное представление со стороны пользовательского интерфейса к исходной базе данных, все продукты OLAP делятся на три класса по типу исходной БД.

Самые первые системы оперативной аналитической обработки (например, Essbase компании Arbor Software , Oracle Express Server компании Oracle ) относились к классу MOLAP, то есть могли работать только со своими собственными многомерными базами данных. Они основываются на патентованных технологиях для многомерных СУБД и являются наиболее дорогими. Эти системы обеспечивают полный цикл OLAP-обработки. Они либо включают в себя, помимо серверного компонента, собственный интегрированный клиентский интерфейс, либо используют для связи с пользователем внешние программы работы с электронными таблицами. Для обслуживания таких систем требуется специальный штат сотрудников, занимающихся установкой, сопровождением системы, формированием представлений данных для конечных пользователей.

Системы оперативной аналитической обработки реляционных данных (ROLAP) позволяют представлять данные, хранимые в реляционной базе, в многомерной форме , обеспечивая преобразование информации в многомерную модель через промежуточный слой метаданных. ROLAP-системы хорошо приспособлены для работы с крупными хранилищами. Подобно системам MOLAP, они требуют значительных затрат на обслуживание специалистами по информационным технологиям и предусматривают многопользовательский режим работы.

Наконец, гибридные системы (Hybrid OLAP, HOLAP) разработаны с целью совмещения достоинств и минимизации недостатков, присущих предыдущим классам. К этому классу относится Media/MR компании Speedware . По утверждению разработчиков, он объединяет аналитическую гибкость и скорость ответа MOLAP с постоянным доступом к реальным данным, свойственным ROLAP.

Многомерный OLAP (MOLAP)

В специализированных СУБД, основанных на многомерном представлении данных, данные организованы не в форме реляционных таблиц, а в виде упорядоченных многомерных массивов:

1) гиперкубов (все хранимые в БД ячейки должны иметь одинаковую мерность, то есть находиться в максимально полном базисе измерений) или

2) поликубов (каждая переменная хранится с собственным набором измерений, и все связанные с этим сложности обработки перекладываются на внутренние механизмы системы).

Использование многомерных БД в системах оперативной аналитической обработки имеет следующие достоинства.

В случае использования многомерных СУБД поиск и выборка данных осуществляется значительно быстрее, чем при многомерном концептуальном взгляде на реляционную базу данных, так как многомерная база данных денормализована, содержит заранее агрегированные показатели и обеспечивает оптимизированный доступ к запрашиваемым ячейкам.

Многомерные СУБД легко справляются с задачами включения в информационную модель разнообразных встроенных функций, тогда как объективно существующие ограничения языка SQL делают выполнение этих задач на основе реляционных СУБД достаточно сложным, а иногда и невозможным.

С другой стороны, имеются существенные ограничения.

Многомерные СУБД не позволяют работать с большими базами данных. К тому же за счет денормализации и предварительно выполненной агрегации объем данных в многомерной базе, как правило, соответствует (по оценке Кодда ) в 2.5-100 раз меньшему объему исходных детализированных данных.

Многомерные СУБД по сравнению с реляционными очень неэффективно используют внешнюю память. В подавляющем большинстве случаев информационный гиперкуб является сильно разреженным, а поскольку данные хранятся в упорядоченном виде, неопределенные значения удаётся удалить только за счет выбора оптимального порядка сортировки, позволяющего организовать данные в максимально большие непрерывные группы. Но даже в этом случае проблема решается только частично. Кроме того, оптимальный с точки зрения хранения разреженных данных порядок сортировки скорее всего не будет совпадать с порядком, который чаще всего используется в запросах. Поэтому в реальных системах приходится искать компромисс между быстродействием и избыточностью дискового пространства, занятого базой данных.

Следовательно, использование многомерных СУБД оправдано только при следующих условиях.

Объем исходных данных для анализа не слишком велик (не более нескольких гигабайт), то есть уровень агрегации данных достаточно высок.

Набор информационных измерений стабилен (поскольку любое изменение в их структуре почти всегда требует полной перестройки гиперкуба).

Время ответа системы на нерегламентированные запросы является наиболее критичным параметром.

Требуется широкое использование сложных встроенных функций для выполнения кроссмерных вычислений над ячейками гиперкуба, в том числе возможность написания пользовательских функций.

Реляционный OLAP (ROLAP)

Непосредственное использование реляционных БД в системах оперативной аналитической обработки имеет следующие достоинства.

В большинстве случаев корпоративные хранилища данных реализуются средствами реляционных СУБД, и инструменты ROLAP позволяют производить анализ непосредственно над ними. При этом размер хранилища не является таким критичным параметром, как в случае MOLAP.

В случае переменной размерности задачи, когда изменения в структуру измерений приходится вносить достаточно часто, ROLAP системы с динамическим представлением размерности являются оптимальным решением, так как в них такие модификации не требуют физической реорганизации БД.

Реляционные СУБД обеспечивают значительно более высокий уровень защиты данных и хорошие возможности разграничения прав доступа.

Главный недостаток ROLAP по сравнению с многомерными СУБД - меньшая производительность. Для обеспечения производительности, сравнимой с MOLAP, реляционные системы требуют тщательной проработки схемы базы данных и настройки индексов, то есть больших усилий со стороны администраторов БД. Только при использовании звездообразных схем производительность хорошо настроенных реляционных систем может быть приближена к производительности систем на основе многомерных баз данных.

Применение OLAP системы позволяет автоматизировать стратегический уровень управления организацией. OLAP (Online Analytical Processing – аналитическая обработка данных в реальном времени) представляет собой мощную технологию обработки и исследования данных. Системы, построенные на основе технологии OLAP, предоставляют практически безграничные возможности по составлению отчетов, выполнению сложных аналитических расчетов, построению прогнозов и сценариев, разработке множества вариантов планов.

Полноценные OLAP системы появились в начале 90-х годов, как результат развития информационных систем поддержки принятия решений. Они предназначены для преобразования различных, часто разрозненных, данных, в полезную информацию. OLAP системы могут организовать данные в соответствии с некоторым набором критериев. При этом не обязательно, чтобы критерии имели четкие характеристики.

Свое применение OLAP системы нашли во многих вопросах стратегического управления организацией: управление эффективностью бизнеса, стратегическое планирование, бюджетирование, прогнозирование развития, подготовка финансовой отчетности, анализ работы, имитационное моделирование внешней и внутренней среды организации, хранение данных и отчетности.

Структура OLAP системы

В основе работы OLAP системы лежит обработка многомерных массивов данных. Многомерные массивы устроены так, что каждый элемент массива имеет множество связей с другими элементами. Чтобы сформировать многомерный массив, OLAP система должна получить исходные данные из других систем (например, ERP или CRM системы), или через внешний ввод. Пользователь OLAP системы получает необходимые данные в структурированном виде в соответствии со своим запросом. Исходя из указанного порядка действий, можно представить структуру OLAP системы.

В общем виде, структура OLAP системы состоит из следующих элементов:

  • база данных . База данных является источником информации для работы OLAP системы. Вид базы данных зависит от вида OLAP системы и алгоритмов работы OLAP сервера. Как правило, используются реляционные базы данных, многомерные базы данных, хранилища данных и т.п.
  • OLAP сервер . Он обеспечивает управление многомерной структурой данных и взаимосвязь между базой данных и пользователями OLAP системы.
  • пользовательские приложения . Этот элемент структуры OLAP системы осуществляет управление запросами пользователей и формирует результаты обращения к базе данных (отчеты, графики, таблицы и пр.)

В зависимости от способа организации, обработки и хранения данных, OLAP системы могут быть реализованы на локальных компьютерах пользователей или с использованием выделенных серверов.

Существует три основных способа хранения и обработки данных:

  • локально . Данные размещаются на компьютерах пользователей. Обработка, анализ и управление данными выполняется на локальных рабочих местах. Такая структура OLAP системы имеет существенные недостатки, связанные со скоростью обработки данных, защищенностью данных и ограниченным применением многомерного анализа.
  • реляционные базы данных . Эти базы данных используются при совместной работе OLAP системы с CRM системой или ERP системой . Данные хранятся на сервере этих систем в виде реляционных баз данных или хранилищ данных. OLAP сервер обращается к этим базам данных для формирования необходимых многомерных структур и проведения анализа.
  • многомерные базы данных . В этом случае данные организованы в виде специального хранилища данных на выделенном сервере. Все операции с данными осуществляются на этом сервере, который преобразует исходные данные в многомерные структуры. Такие структуры называют OLAP кубом. Источниками данных для формирования OLAP куба являются реляционные базы данных и/или клиентские файлы. Сервер данных осуществляет предварительную подготовку и обработку данных. OLAP сервер работает с OLAP кубом не имея непосредственного доступа к источникам данных (реляционным базам данных, клиентским файлам и др.).

Виды OLAP систем

В зависимости от метода хранения и обработки данных все OLAP системы могут быть разделены на три основных вида.


1. ROLAP (Relational OLAP – реляционные OLAP системы) – этот вид OLAP системы работает с реляционными базами данных. Обращение к данным осуществляется напрямую в реляционную базу данных. Данные хранятся в виде реляционных таблиц. Пользователи имеют возможность осуществлять многомерный анализ как в традиционных OLAP системах. Это достигается за счет применения инструментов SQL и специальных запросов.

Одним из преимуществ ROLAP является возможность более эффективно осуществлять обработку большого объема данных. Другим преимуществом ROLAP является возможность эффективной обработки как числовых, так и текстовых данных.

К недостаткам ROLAP относится низкая производительность (по сравнению с традиционными OLAP системами), т.к. обработку данных осуществляет сервер OLAP. Другим недостатком является ограничение функциональности из-за применения SQL.


2. MOLAP (Multidimensional OLAP – многомерные OLAP системы). Этот вид OLAP систем относится к традиционным системам. Отличие традиционной OLAP системы, от других систем, заключается в предварительной подготовке и оптимизации данных. Эти системы, как правило, используют выделенный сервер, на котором осуществляется предварительная обработка данных. Данные формируются в многомерные массивы – OLAP кубы.

MOLAP системы являются самыми эффективными при обработке данных, т.к. они позволяют легко реорганизовать и структурировать данные под различные запросы пользователей. Аналитические инструменты MOLAP позволяют выполнять сложные расчеты. Другим преимуществом MOLAP является возможность быстрого формирования запросов и получения результатов. Это обеспечивается за счет предварительного формирования OLAP кубов.

К недостаткам MOLAP системы относится ограничение объемов обрабатываемых данных и избыточность данных, т.к. для формирования многомерных кубов, по различным аспектам, данные приходится дублировать.


3. HOLAP (Hybrid OLAP – гибридные OLAP системы). Гибридные OLAP системы представляют собой объединение систем ROLAP и MOLAP. В гибридных системах постарались объединить преимущества двух систем: использование многомерных баз данных и управление реляционными базами данных. HOLAP системы позволяют хранить большое количество данных в реляционных таблицах, а обрабатываемые данные размещаются в предварительно построенных многомерных OLAP кубах. Преимущества этого вида систем заключаются в масштабируемости данных, быстрой обработке данных и гибком доступе к источникам данных.

Существуют и другие виды OLAP систем, но они в большей степени являются маркетинговым ходом производителей, чем самостоятельным видом OLAP системы.

К таким видам относятся:

  • WOLAP (Web OLAP). Вид OLAP системы с поддержкой web интерфейса. В этих системах OLAP есть возможность обращаться к базам данных через web интерфейс.
  • DOLAP (Desktop OLAP). Этот вид OLAP системы дает возможность пользователям загрузить на локальное рабочее место базу данных и работать с ней локально.
  • MobileOLAP . Это функция OLAP систем, которая позволяет работать с базой данных удаленно, с использованием мобильных устройств.
  • SOLAP (Spatial OLAP). Этот вид OLAP систем предназначен для обработки пространственных данных. Он появился как результат интеграции географических информационных систем и OLAP системы. Эти системы позволяют обрабатывать данные не только в буквенно-цифровом формате, но и в виде визуальных объектов и векторов.

Преимущества OLAP системы

Применение OLAP системы дает организации возможности по прогнозированию и анализу различных ситуаций, связанных с текущей деятельностью и перспективами развития. Эти системы можно рассматривать как дополнение к системам автоматизации уровня предприятия. Все преимущества OLAP систем напрямую зависят от точности, достоверности и объема исходных данных.

Основными преимуществами OLAP системы являются:

  • согласованность исходной информации и результатов анализа . При наличии OLAP системы всегда есть возможность проследить источник информации и определить логическую связь между полученными результатами и исходными данными. Снижается субъективность результатов анализа.
  • проведение многовариантного анализа . Применение OLAP системы позволяет получить множество сценариев развития событий на основе набора исходных данных. За счет инструментов анализа можно смоделировать ситуации по принципу «что будет, если».
  • управление детализацией . Детальность представления результатов может изменяться в зависимости от потребности пользователей. При этом нет необходимости осуществлять сложные настройки системы и повторять вычисления. Отчет может содержать именно ту информацию, которая необходима для принятия решений.
  • выявление скрытых зависимостей . За счет построения многомерных связей появляется возможность выявить и определить скрытые зависимости в различных процессах или ситуациях, которые влияют на производственную деятельность.
  • создание единой платформы . За счет применения OLAP системы появляется возможность создать единую платформу для всех процессов прогнозирования и анализа на предприятии. В частности, данные OLAP системы, являются основой для построения прогнозов бюджета, прогноза продаж, прогноза закупок, плана стратегического развития и пр.

С концепцией многомерного анализа данных тесно связывают оперативный анализ, который выполняется средствами OLAP-систем.

OLAP (On-Line Analytical Processing) -- технология оперативной аналитической обработки данных, использующая методы и средства для сбора, хранения и анализа многомерных данных в целях поддержки процессов принятия решений.

Основное назначение OLAP-систем -- поддержка аналитической деятельности, произвольных (часто используется термин ad-hoc) запросов пользователей-аналитиков. Цель OLAP-анализа -- проверка возникающих гипотез.

У истоков технологии OLAP стоит основоположник реляционного подхода Э. Кодд. В 1993 г. он опубликовал статью под названием «OLAP для пользователей-аналитиков: каким он должен быть». В данной работе изложены основные концепции оперативной аналитической обработки и определены следующие 12 требований, которым должны удовлетворять продукты, позволяющие выполнять оперативную аналитическую обработку. Токмаков Г.П. Базы данных. Концепция баз данных, реляционная модель данных, языки SQL. С. 51

Ниже перечислены 12 правил, изложенных Коддом и определяющих OLAP.

1. Многомерность -- OLAP-система на концептуальном уровне должна представлять данные в виде многомерной модели, что упрощает процессы анализа и восприятия информации.

2. Прозрачность -- OLAP-система должна скрывать от пользователя реальную реализацию многомерной модели, способ организации, источники, средства обработки и хранения.

3. Доступность -- OLAP-система должна предоставлять пользователю единую, согласованную и целостную модель данных, обеспечивая доступ к данным независимо оттого, как и где они хранятся.

4. Постоянная производительность при разработке отчетов -- производительность OLAP-систем не должна значительно уменьшаться при увеличении количества измерений, по которым выполняется анализ.

5. Клиент-серверная архитектура -- OLAP-система должна быть способна работать в среде «клиент-сервер», т.к. большинство данных, которые сегодня требуется подвергать оперативной аналитической обработке, хранятся распределенно. Главной идеей здесь является то, что серверный компонент инструмента OLAP должен быть достаточно интеллектуальным и позволять строить общую концептуальную схему на основе обобщения и консолидации различных логических и физических схем корпоративных БД для обеспечения эффекта прозрачности.

6. Равноправие измерений -- OLAP-система должна поддерживать многомерную модель, в которой все измерения равноправны. При необходимости дополнительные характеристики могут быть предоставлены отдельным измерениям, но такая возможность должна быть предоставлена любому измерению.

7. Динамическое управление разреженными матрицами -- OLAP-система должна обеспечивать оптимальную обработку разреженных матриц. Скорость доступа должна сохраняться вне зависимости от расположения ячеек данных и быть постоянной величиной для моделей, имеющих разное число измерений и различную степень разреженности данных.

8. Поддержка многопользовательского режима -- OLAP-система должна предоставлять возможность работать нескольким пользователям совместно с одной аналитической моделью или создавать для них различные модели из единых данных. При этом возможны как чтение, так и запись данных, поэтому система должна обеспечивать их целостность и безопасность.

9. Неограниченные перекрестные операции -- OLAP-система должна обеспечивать сохранение функциональных отношений, описанных с помощью определенного формального языка между ячейками гиперкуба при выполнении любых операций среза, вращения, консолидации или детализации. Система должна самостоятельно (автоматически) выполнять преобразование установленных отношений, не требуя от пользователя их переопределения.

10. Интуитивная манипуляция данными -- OLAP-система должна предоставлять способ выполнения операций среза, вращения, консолидации и детализации над гиперкубом без необходимости пользователю совершать множество действий с интерфейсом. Измерения, определенные в аналитической модели, должны содержать всю необходимую информацию для выполнения вышеуказанных операций.

11. Гибкие возможности получения отчетов -- OLAP-система должна поддерживать различные способы визуализации данных, т.е. отчеты должны представляться в любой возможной ориентации. Средства формирования отчетов должны представлять синтезируемые данные или информацию, следующую из модели данных в ее любой возможной ориентации. Это означает, что строки, столбцы или страницы должны показывать одновременно от 0 до N измерений, где N-- число измерений всей аналитической модели. Кроме того, каждое измерение содержимого, показанное в одной записи, колонке или странице, должно позволять показывать любое подмножество элементов (значений), содержащихся в измерении, в любом порядке.

12. Неограниченная размерность и число уровней агрегации -- исследование о возможном числе необходимых измерений, требующихся в аналитической модели, показало, что одновременно может использоваться до 19 измерений. Отсюда вытекает настоятельная рекомендация, чтобы аналитический инструмент мог одновременно предоставить хотя бы 15, а предпочтительно -- 20 измерений. Более того, каждое из общих измерений не должно быть ограничено по числу определяемых пользователем-аналитиком уровней агрегации и путей консолидации.

Дополнительные правила Кодда.

Набор этих требований, послуживших де-факто определением OLAP, достаточно часто вызывает различные нарекания, например, правила 1, 2, 3, 6 являются требованиями, а правила 10, 11 -- неформализованными пожеланиями. Токмаков Г.П. Базы данных. Концепция баз данных, реляционная модель данных, языки SQL. С. 68 Таким образом, перечисленные 12 требований Кодда не позволяют точно определить OLAP. В 1995 г. Кодд к приведенному перечню добавил следующие шесть правил:

13. Пакетное извлечение против интерпретации -- OLAP-система должна в равной степени эффективно обеспечивать доступ как к собственным, так и к внешним данным.

14. Поддержка всех моделей OLAP-анализа -- OLAP-система должна поддерживать все четыре модели анализа данных, определенные Коддом: категориальную, толковательную, умозрительную и стереотипную.

15. Обработка ненормализованных данных -- OLAP-система должна быть интегрирована с ненормализованными источниками данных. Модификации данных, выполненные в среде OLAP, не должны приводить к изменениям данных, хранимых в исходных внешних системах.

16. Сохранение результатов OLAP: хранение их отдельно от исходных данных -- OLAP-система, работающая в режиме чтения-записи, после модификации исходных данных должна результаты сохранять отдельно. Иными словами, обеспечивается безопасность исходных данных.

17. Исключение отсутствующих значений-- OLAP-система, представляя данные пользователю, должна отбрасывать все отсутствующие значения. Другими словами, отсутствующие значения должны отличаться от нулевых значений.

18. Обработка отсутствующих значений -- OLAP-система должна игнорировать все отсутствующие значения без учета их источника. Эта особенность связана с 17-м правилом.

Кроме того, Кодд разбил все 18 правил на следующие четыре группы, назвав их особенностями. Эти группы получили названия В, S, R и D.

Основные особенности (В) включают следующие правила:

Многомерное концептуальное представление данных (правило 1);

Интуитивное манипулирование данными (правило 10);

Доступность (правило 3);

Пакетное извлечение против интерпретации (правило 13);

Поддержка всех моделей OLAP-анализа (правило 14);

Архитектура «клиент-сервер» (правило 5);

Прозрачность (правило 2);

Многопользовательская поддержка (правило 8)

Специальные особенности (S):

Обработка ненормализованных данных (правило 15);

Сохранение результатов OLAP: хранение их отдельно от исходных данных (правило 16);

Исключение отсутствующих значений (правило 17);

Обработка отсутствующих значений (правило 18). Особенности представления отчетов (R):

Гибкость формирования отчетов (правило 11);

Стандартная производительность отчетов (правило 4);

Автоматическая настройка физического уровня (измененное оригинальное правило 7).

Управление измерениями (D):

Универсальность измерений (правило 6);

Неограниченное число измерений и уровней агрегации (правило 12);

Неограниченные операции между размерностями (правило 9).



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: