Лазерный принтер устройство и принцип работы. Как работает принтер: обзор технологий печати. Процесс наложения изображения

Цветные лазерные принтеры начинают активно завоевывать рынок печати. Если еще несколько лет назад цветная лазерная печать была для большинства организаций и тем более для отдельных граждан чем-то недосягаемым, то сейчас купить цветной лазерный принтер может позволить себе весьма широкий круг пользователей. Быстрорастущий парк цветных лазерных принтеров приводит к тому, что растет и интерес к ним со стороны служб технической поддержки.

Принципы цветной печати

В принтерах, как и в полиграфии для создания цветных изображений применяется субтрактивная цветовая модель, а не аддитивная, как в мониторах и сканерах, в которых любой цвет и оттенок получается смешением трех основных цветов – R (красный), G (зеленый), B (синий). Субтрактивная модель цветоделения называется так потому, что для образования какого-либо оттенка надо вычесть из белого цвета “лишние” составляющие. В печатающих устройствах для получения любого оттенка в качестве основных цветов используют: Cyan (голубой, бирюзовый), Magenta (пурпурный), Yellow (желтый) . Эта цветовая модель получила название CMY по первым буквам основных цветов.

В субтрактивной модели при смешивании двух или более цветов дополнительные цвета получаются посредством поглощения одних световых волн и отражения других. Голубая краска, например, поглощает красный цвет и отражает зеленый и синий; пурпурная краска поглощает зеленый цвет и отражает красный и синий; а желтая краска поглощает синий цвет и отражает красный и зеленый. При смешивании основных составляющих субтрактивной модели можно получить различные цвета, которые описаны ниже:

Голубой + Желтый = Зеленый

Пурпурный + Желтый = Красный

Пурпурный + Голубой = Синий

Пурпурный + Голубой + Желтый = Черный

Стоит отметить, что для получения черного цвета необходимо смешать все три составляющие, т.е. голубой, пурпурный и желтый, однако получить качественный черный цвет таким образом, практически невозможно. Получаемый цвет будет не черным, а скорее грязно-серым. Для устранения такого недостатка к трем основным цветам добавляется еще один – черный. Такая расширенная цветовая модель называется CMYK (C yan-M agenta-Y ellow-blacK – голубой-пурпурный-желтый-черный). Введение черного цвета позволяет значительно повысить качество цветопередачи.

Принтер HP Color LaserJet 8500

После того, как мы обсудили общие принципы построения и работы цветных лазерных принтеров, стоит ознакомиться более подробно с их устройством, механизмами, модулями и блоками. Это лучше всего сделать на примере какого-нибудь принтера. В качестве такого примера давайте возьмем принтер фирмы Hewlett-Packard Color LaserJet 8500.

Основными его характеристиками являются :
- разрешающая способность: 600 DPI;
- скорость печати в “цветном” режиме: 6 стр/мин.;
- скорость печати в “черно-белом” режиме: 24 стр./мин.

Основные узлы принтера и их взаимное расположение приводится на рис.5.

Формирование изображения начинается с того, что с поверхности фотобарабана снимаются (нейтрализуются) остаточные потенциалы. Это делается для того, чтобы последующий заряд фотобарабана был более равномерным, т.е. перед зарядом он полностью разряжается. Снятие остаточных потенциалов осуществляется путем засвечивания всей поверхности барабана специальной лампой предварительного (кондиционирующего) экспонирования, которая представляет собой линейку светодиодов (рис.7).

Далее на поверхности фотобарабана создается высоковольтный (до -600В) отрицательный потенциал. Заряжается барабан коротроном в виде ролика из токопроводящей резины (рис.8). На коротрон подается переменное напряжение синусоидальной формы с отрицательной постоянной составляющей. Переменная составляющая (АС) обеспечивает равномерное распределение зарядов на поверхности, а постоянная составляющая (DC) заряжает барабан. Уровень постоянной составляющей может регулироваться при изменении плотности печати (плотности тонера), что делается с помощью драйвера принтера или регулировками через панель управления. Увеличение отрицательного потенциала приводит к уменьшению плотности, т.е. к более светлому изображению, уменьшение же потенциала – наоборот, к более плотному (темному) изображению. Фотобарабан (его внутренняя металлическая основа) должен быть обязательно “заземлен”.

После всего этого на поверхности фотобарабана лазерным лучом создается изображение в виде заряженных и незаряженных участков. Световой пучок лазера, попадая на поверхность барабана, разряжает данный участок. Лазером засвечиваются те участки барабана, на которых должен быть тонер. Те участки, которые должны быть белыми, лазером не засвечиваются, и на них остается высокий отрицательный потенциал. Луч лазера перемещается по поверхности барабана с помощью вращающегося шестигранного зеркала, находящегося в сборке лазера. Изображение на барабане называют скрытым электрографическим изображением, т.к. оно представлено в виде невидимых электростатических потенциалов.

Скрытое электрографическое изображение становится видимым после прохождения через узел проявки. Проявительный модуль черного тонера является стационарным и находится в постоянном соприкосновении c фотобарабаном (рис.9).

Цветной проявительный модуль представляет собой карусельный механизм с поочередной подачей “цветных” картриджей к поверхности барабана (рис.10). Черный тонер-порошок является магнитным однокомпонентным, а цветные порошки – однокомпонентные, но немагнитные. Любой тонер-порошок заряжается до отрицательного потенциала за счет трения о поверхность проявительного вала и дозировочный ракель. За счет разности потенциалов и кулоновского взаимодействия зарядов, отрицательно заряженные частички тонера притягиваются к тем участкам фотобарабана, которые разряжены лазером и отталкиваются от участков с высоким отрицательным потенциалом, т.е. от тех, которые не засвечивались лазером. В каждый момент времени осуществляется проявка тонером только одного цвета. В момент проявки на проявительный вал подается напряжение смещения, которое вызывает перенос тонера с проявительного вала на фотобарабан. Это напряжение представляет собой переменное напряжение прямоугольной формы с отрицательной постоянной составляющей. Уровень постоянной составляющей может регулироваться при изменении плотности тонера. После окончания процедуры проявки изображение на фотобарабане становится видимым, и его необходимо перенести на барабан переноса.

Поэтому следующим этапом в создании изображения является передача проявленного изображения на барабан переноса. Этот этап называют этапом первичного переноса. Перенос тонера с одного барабана на другой происходит за счет электростатической разности потенциалов, т.е. отрицательно заряженные частички тонера должны притянуться положительным потенциалом на поверхности барабана переноса. Для этого на поверхность барабана переноса подается положительное напряжение смещения постоянного тока от специального источника питания, в результате чего вся поверхность этого барабана имеет положительный потенциал. При полноцветной печати напряжение смещения на барабане переноса должно постоянно увеличиваться, т.к. после каждого прохода количество отрицательно заряженного тонера на барабане возрастает. И для того, чтобы тонер мог переноситься и ложиться поверх уже существующего тонера, напряжение переноса увеличивается с каждым новым цветом. Этот этап формирования изображения показан на рис.11.

В процессе переноса тонера на барабан переноса отдельные частички тонера могут остаться на поверхности фотобарабана, и они должны быть удалены, чтобы не искажать последующее изображение. Для удаления остатков тонера в принтере имеется блок очистки фотобарабана (см. рис 17). В составе этого модуля имеется специальный вал – кисть для снятия заряда с тонера и фотобарабана – это ослабляет силу притяжения тонера к фотобарабану. Также имеется традиционный очистительный ракель, который соскребает тонер в специальный бункер, где он и хранится до тех пор, пока очистительный модуль не будет заменен или не будет вычищен.

Далее фотобарабан снова заряжается (после предварительного разряда), и процесс повторяется до тех пор, пока на барабане переноса не будет полностью сформировано изображение соответствующего цвета. Поэтому размер барабана переноса должен полностью соответствовать формату печати, т.е. в данной модели принтера длина окружности этого барабана соответствует длине листа формата А3 (420 мм). После нанесения тонера одного цвета процесс формирования изображения полностью повторяется с той лишь разницей, что используется проявительный блок другого цвета. Для использования другого проявительного узла карусельный механизм поворачивается на заданный угол и подводит “новый” проявительный вал к поверхности фотобарабана. Таким образом, при формировании полноцветного изображения, состоящего из четырех цветовых составляющих, барабан переноса проворачивается четыре раза, и на каждом обороте к уже существующему тонеру добавляется тонер другого цвета. При этом первым наносится порошок желтого цвета, потом пурпурного, потом голубого и уже последним наносится черный порошок. В итоге, на барабане переноса создается полноцветное видимое изображение, состоящее из частичек четырех разноцветных тонер-порошков.

После того, как тонер-порошок оказывается на поверхности барабана переноса, он проходит через блок дополнительного заряда. Этот блок (рис.12) представляет собой проволочный коротон, на который подается переменное напряжение синусоидальной формы (АС) с отрицательной постоянной составляющей (DC). Этим напряжением тонер порошок дополнительно заряжается, т.е. его отрицательный потенциал становится выше, что будет способствовать более эффективному переносу тонера на бумагу. Кроме того, дополнительное напряжение уменьшает значение положительного потенциала барабана переноса, что способствует правильному расположению тонера на барабане переноса и препятствует смещению тонера. Как результат этого – точное воспроизведение цветовых оттенков. Напряжение дополнительного заряда подается на барабан переноса во время нанесения желтого тонера, т.е. в самом начале процесса формирования изображения. При нанесении желтого тонер-порошка напряжение дополнительного заряда устанавливается на минимальное значение, и после нанесения каждого нового цвета это напряжение увеличивается. Максимальное напряжение дополнительного заряда подается во время нанесения черного тонера.

Далее полноцветное видимое изображение с барабана переноса должно быть перенесено на бумагу. Этот процесс переноса получил название вторичного переноса. Вторичный перенос осуществляется еще одним коротроном, выполненным в виде транспортного ремня (рис.13). Тонер перемещается на бумагу под действием электростатических сил, т.е. за счет разности потенциалов тонер-порошка (отрицательный) и коротрона вторичного переноса, на который подается положительное напряжение смещения. Так как вторичный перенос осуществляется только после четырех оборотов барабана переноса, транспортный ремень коротрона должен подать бумагу только тогда, когда все цвета нанесены, т.е. во время уже четвертого оборота, а до этого момента времени ремень должен быть в таком положении, чтобы бумага не касалась барабана переноса.

Таким образом, транспортный ремень во время создания изображения опущен вниз, и не соприкасается с барабаном переноса, а в момент вторичного переноса поднят вверх и касается этого барабана. Перемещение транспортного ремня коротрона осуществляется эксцентриковым кулачком, который приводится в действие электрической муфтой по команде от микроконтроллера (рис.14).

При вторичном переносе лист бумаги может притягиваться к поверхности барабана переноса за счет разницы электростатических потенциалов. Это может стать причиной накручивания листа бумаги на барабан, и соответственно к замятию бумаги. Для предотвращения такого явления в составе принтера имеется система отделения бумаги и снятия с нее статического потенциала. Система представляет собой коротрон, на который подается переменное напряжение синусоидальной формы с положительной постоянной составляющей. Расположение коротрона относительно бумаги и барабана переноса показано на рис.15.

На этапе вторичного переноса некоторые частички тонера не переносятся на бумагу, а остаются на поверхности барабана. Чтобы эти частички не мешали созданию следующего листа и не искажали изображения необходимо произвести очистку барабана переноса и удалить остатки тонера. Очистка барабана переноса является достаточно сложным процессом. Для этой процедуры задействуется специальный ролик очистки, фотобарабан и блок очистки фотобарабана. Очистка барабана переноса должна осуществляться не постоянно, а только после вторичного переноса, т.е. система очистки должна управляться аналогично коротрону переноса. Пока создается изображение, система очистки не активна, а когда начинается перенос тонера на бумагу - включается. Первым этапом очистки является перезаряд остаточного тонер-порошка, т.е. его потенциал меняется с отрицательного на положительный. Для этого применяется ролик очистки, на который подается переменное синусоидальное напряжение с положительной постоянной составляющей. Этот ролик прижимается к поверхности фотобарабана в период очистки, а в процессе создания изображения он откидывается. Управляется ролик эксцентриковым кулачком, который в свою очередь приводится в действие соленоидом (рис.16).

После этого положительно заряженный тонер переносится на фотобарабан, на котором по-прежнему имеется отрицательное напряжение смещения. И уже с поверхности фотобарабана тонер счищается очистительным ракелем блока очистки фотобарабана (рис.17).

Заканчивается создание полноцветного изображения фиксацией тонера на бумаге с помощью температуры и давления. Лист бумаги проходит между двумя роликами блока фиксации (печки), разогревается до температуры порядка 200 ºС, тонер расплавляется и вдавливается в поверхность бумаги. Для предотвращения прилипания тонера к печке на нагревательный вал подается отрицательное напряжение смещения, в результате чего отрицательный тонер-порошок остается на бумаге, а не на тефлоновом валу.

Мы рассмотрели принцип работы только одного принтера одной фирмы. Другими производителями могут применяться и иные принципы формирования изображения и другие технические решения при построении принтеров, однако, все эти решения будут весьма близки к тем, что были рассмотрены ранее.

Страница 2 из 2

В статье рассматривается принцип действия и устройство современных лазерных принтеров . Она открывает серию статей , посвященных принципам и проблемам лазерной платы .

Изображение, получаемое с помощью современных лазерных принтеров (а также матричных и струйных), состоит из точек (dots). Чем меньше эти точки и чем чаще они расположены, тем выше качество изображения. Максимальное количество точек, которые принтер может раздельно напечатать на отрезке в 1 дюйм (25,4 мм), называется разрешением и характеризуется в точках на дюйм , при этом разрешение может быть 1200 dpi и более. Качество текста, напечатанного на лазерном принтере с разрешением 300 dpi, примерно соответствует типографскому. Однако если страница содержит рисунки, содержащие градации серого цвета, то для получения качественного гра-фического изображения потребуется разрешение не ниже 600 dpi. При разрешающей способности принтера 1200 dpi отпечаток получается почти фо-тографического качества. Если необходимо печатать большое количество документов (например, более 40 листов в день), лазерный принтер пред-ставляется единственным разумным выбором, поскольку для современных персональных лазерных принтеров стандартными параметрами являются разрешение 600 dpi и скорость печати 8...1 2 страниц в минуту.

ПРИНЦИП РАБОТЫ ЛАЗЕРНОГО ПРИНТЕРА

Впервые лазерный принтер был представлен фирмой Hewlett Packard. В нем был использован электрографический принцип создания изображений - такой же, как в копировальных аппаратах. Различие состояло в способе экспонирования: в копировальных аппаратах оно происходит с помощью лампы, а в лазерных принтерах свет лампы заменил луч лазера.

Сердцем лазерного принтера является фотопроводящий цилиндр (Organic Photo Conductor), который часто называют печатающим фотобарабаном или просто барабаном. С его помощью производится перенос изображения на бумагу. Фотобарабан представляет собой металлический цилиндр, покрытый тонкой пленкой фоточувствительного полупроводника. Поверхность такого цилиндра можно снабдить положительным или отрицательным зарядом, который сохраняется до тех пор, пока барабан не освещен. Если какую-либо часть барабана экспонировать, покрытие приобретает проводимость, и заряд стекает с освещенного участка, образуя незаряженную зону. Это - ключевой момент в понимании принципа работы лазерного принтера.

Другой важнейшей частью принтера является лазер и оптико-механическая система зеркал и линз, перемещающая луч лазера по поверхности барабана. Малогабаритный лазер генерирует очень тонкий световой луч. Отражаясь от вращающихся зеркал (обычно четырехгранной или шестигранной формы), этот луч засвечивает поверхность фотобарабана, снимая ее заряд в точке экспонирования.

Для получения точечного изображения лазер включается и выключается при помощи управляющего микроконтроллера. Вращающееся зеркало разворачивает луч в виде строки скрытого изображения на поверхности фотобарабана.

После формирования строки специальный шаговый двигатель поворачивает барабан для формирования следующей. Это смещение соответствует раз-решающей способности принтера по вертикали и обычно составляет 1/300 или 1/600 дюйма. Процесс образования скрытого изображения на барабане напоминает формирование растра на экране телевизионного монитора.

Используются два основных способа предварительного (первичного) заряда поверхности фотоцилиндра:

Ø при помощи тонкой проволоки или сетки, называемой «коронирующим проводом». Высокое напряжение, подаваемое на провод, приводит к воз-никновению светящейся ионизированной области вокруг него, которая называется короной, и придает барабану необходимый статический заряд;

Ø при помощи предварительно заряженного резинового вала (PCR).

Итак, на барабане сформировано невидимое изображение в виде статически разряженных точек. Что же дальше?

УСТРОЙСТВО КАРТРИДЖА

Перед тем как рассказать о процессе передачи и закрепления изображения на бумаге, рассмотрим устройство картриджа для принтера Laser Jet 5L фирмы Hewlett Packard. В этом типичном картридже можно выделить два основных отделения: отделение для отработанного тонера и тонерный отсек.

Основные конструктивные элементы отделения для отработанного тонера:

1 - Фотобарабан (Organic Photo Conductor (OPC) Drum). Представляет собой алюминиевый цилиндр, покрытый органическим светочувствительным и фотопроводящим материалом (обычно оксидом цинка), который способен сохранять образ, наносимый лазерным лучом;

2 - Вал первичного заряда (Primary Charge Roller (PCR)). Обеспечивает равномерный отрицательный заряд барабана. Выполнен из токопроводящей ре-зиновой или поролоновой основы, нанесенной на металлический вал;

3 - « Вайпер » , ракель , чистящее лезвие (Wiper Blade, Cleaning Blade). Очищает барабан от остатков тонера, который не был перенесен на бумагу. Конструктивно выполнен в виде металлического каркаса (stamping) с полиуретановой пластиной (blade) на конце;

4 - Лезвие очистки (Recovery Blade ). Перекрывает область между барабаном и бункером для отработанного тонера. Recovery Blade пропускает тонер, оставшийся на барабане, внутрь бункера и не дает ему высыпаться в обратном направлении (из бункера на бумагу).

Основные конструктивные элементы тонерного отсека:

1 - Магнитный вал (Magnetic Developer Roller, Mag Roller, Developer Roller). Представляет собой металлическую трубку, внутри которой находится не-подвижный магнитный сердечник. К магнитному валу притягивается тонер, который перед подачей на барабан приобретает отрицательный заряд под дей-ствием постоянного или переменного напряжения;

2 - « Доктор » (Doctor Blade, Metering Blade). Обеспечивает равномерное распределение тонкого слоя тонера на магнитном вале. Конструктивно выполнен в виде металлического каркаса (stamping) с гибкой пластиной (blade) на конце;

3 - Уплотнительное лезвие магнитного вала (Mag Roller Sealing Blade ). Тонкая пластина, аналогичная по функциям Recovery Blade. Перекрывает область между магнитным валом и отсеком подачи тонера. Mag Roller Sealing Blade пропускает тонер, оставшийся на магнитном вале, внутрь отсека, предотвращая утечку тонера в обратном направлении;

4 - Бункер для тонера (Toner Reservoir ). Внутри него находится «рабочий» тонер, который будет перенесен на бумагу в процессе печати. Кроме того, в бункер встроен активатор тонера (Toner Agitator Bar) -проволочная рамка, предназначенная для перемешивания тонера;

5 - Пломба , чека (Seal ). В новом (или регенерированном) картридже тонерный бункер запечатан специальной пломбой, которая предотвращает просыпание тонера при транспортировке картриджа. Перед началом эксплуатации эта пломба удаляется.

ПРИНЦИП ЛАЗЕРНОЙ ПЕЧАТИ

На рисунке изображен картридж в разрезе. Когда включается принтер, все компоненты картриджа приходят в движение: происходит подготовка картриджа к печати. Этот процесс аналогичен процессу печати, но лазерный луч не включается. Затем движение компонентов картриджа останавливается - принтер переходит в состояние готовности к печати .

После отправки документа на печать, в картридже лазерного принтера происходят следующие процессы:

Зарядка барабана . Вал первичного заряда (PCR) равномерно передает на поверхность вращающегося барабана отрицательный заряд.

Экспонирование . Отрицательно заряженная поверхность барабана экспонируется лазерным лучом только в тех местах, на которые будет нанесен тонер. Под действием света фоточувствительная поверхность барабана частично теряет отрицательный заряд. Таким образом, лазер экспонирует на барабан скрытое изображение в виде точек с ослабленным отрицательным зарядом.

Нанесение тонера . На этом этапе скрытое изображение на барабане при помощи тонера превращается в видимое изображение, которое будет перенесено на бумагу. Тонер, находящийся около магнитного вала, притягивается к его поверхности под действием поля постоянного магнита, из которого изготовлена сердцевина вала. При вращении магнитного вала тонер проходит сквозь узкую щель, образованную «доктором» и валом. В результате он приобретает отрицательный заряд и прилипает к тем участкам барабана, которые были экспонированы. «Доктор» обеспечивает равномерность нанесения тонера на магнитный вал.

Перенос тонера на бумагу . Продолжая вращаться, барабан с проявленным изображением соприкасается с бумагой. С обратной стороны бумага прижимается к валу Transfer Roller, несущему положительный заряд. В результате отрицательно заряженные частицы тонера притягиваются к бумаге, на которой получается изображение, «насыпанное» тонером.

Закрепление изображения . Лист бумаги с незакрепленным изображением перемещается к механизму закрепления, представляющему собой два со-прикасающихся вала, между которыми протягивается бумага. Нижний вал (Lower Pressure Roller) прижимает ее к верхнему валу (Upper Fuser Roller). Верхний вал нагрет, и при соприкосновении с ним частицы тонера расплавляются и закрепляются на бумаге.

Очистка барабана . Некоторое количество тонера не переносится на бумагу и остается на барабане, поэтому его необходимо очистить. Эту функцию выполняет «вайпер». Весь тонер, оставшийся на барабане, счищается вайпером в бункер для отработанного тонера. При этом Recovery Blade закрывает область между барабаном и бункером, не позволяя тонеру просыпаться на бумагу.

«Стирание» изображения . На этом этапе с поверхности барабана «стирается» скрытое изображение, нанесенное лазерным лучом. При помощи вала первичного заряда поверхность фотобарабана равномерно «покрывается» отрицательным зарядом, который восстанавливается в тех местах, где он был частично снят под действием света.

Лазерные принтеры стали незаменимыми атрибутами офисной оргтехники. Такая популярность объясняется большой скоростью и невысокой себестоимостью печати. Чтобы понять, как работает эта техника, следует знать устройство и принцип работы лазерного принтера. На самом деле, вся магия аппарата объясняется простыми конструктивными решениями.

Еще в 1938 году Честером Карлсоном была запатентована технология, переносившая изображение на бумагу при помощи сухих чернил. Основным двигателем работы было статическое электричество. Электрографический метод (а это был именно он) получил большое распространение в 1949 году, когда корпорация Xerox взяла его за основу в работе самого первого своего аппарата. Однако до логического совершенства и полной автоматизации процесса потребовалось еще десятилетие работ – только после этого и появился первый «Ксерокс», который стал прообразом современных лазерных печатных устройств.

Первый лазерный принтер Xerox 9700

Сам же первый лазерный принтер появился только в 1977 году (им стала модель Xerox 9700). Тогда печать производилась со скоростью 120 страниц в минуту. Этот аппарат использовался исключительно в учреждениях и на предприятиях. А вот уже в 1982 году выходит первым настольный агрегат Canon. С этого времени к разработкам подключаются многочисленные бренды, которые и по сегодняшний день предлагают все новые варианты настольных лазерных печатающих помощников. Каждому человеку, решившему пользоваться подобной техникой, интересно будет узнать больше о внутреннем строении и принципе работы такого агрегата.

Что же внутри

Несмотря на большой ассортимент, устройство лазерного принтера всех моделей является схожим. За основу работы взята фотоэлектрическая часть ксерографии , а сам прибор поделен на следующие блоки и узлы:

  • блок лазерного сканирования;
  • узел, осуществляющий перенос изображения;
  • узел для закрепления изображения.

Первый блок представлен системой линз и зеркал . Именно здесь находится полупроводниковый тип лазера со способной фокусироваться линзой. Далее расположены зеркала и группы, которые могут вращаться, тем самым формируя изображение. Переходим к узлу, отвечающему за перенос изображения: в нем находятся сам тонерный картридж и ролик , переносящий заряд. Уже только в картридже присутствуют три основных формирующих изображение элемента: фотоцилиндр, вал с предварительным зарядом и магнитный вал (работающий совместно с барабаном устройства). И вот тут большую актуальность приобретает возможность фотоцилиндра менять свою проводимость под действием попавшего на него света. Когда фотоцилиндру придается зарядность, он сохраняет ее надолго, но при засвечивании уменьшается его сопротивление, что приводит к тому, что заряд начинает стекать с его поверхности. Так появляется необходимый нам оттиск.

В целом, существует два способа для создания картинки.

Попадая в агрегат, непосредственно перед будущим контактом с фотоцилиндром, соответствующий заряд получает и сама бумага. В этом ей помогает ролик переноса изображения. После переноса статический заряд исчезает при помощи специального нейтрализатора – так бумага перестает притягиваться в фотоцилиндру.

А как же фиксируется изображение? Это происходит за счет тех добавок, которые находятся в тонере. Они имеют определенную температуру плавления. Такая «печка» вдавливает в бумагу расплавленный порошок тонера, после чего он быстро застывает и становится долговечным.

Распечатанные на бумаге лазерным принтером изображения имеют отличную стойкость к многочисленным внешним воздействиям.

Как устроен картридж

Определяющим звеном в работе лазерного принтера является картридж. Он представляет собой небольшой бункер с двумя отсеками – для рабочего тонера и для уже отработанного материала. Также здесь находится светочувствительный барабан (фотоцилиндр) и механические шестеренки для его проворачивания.

Сам тонер представляет собой порошок мелкодиспенсерного вида, который состоит из полимерных шариков – они покрыты специальным слоем магнитного материала. Если речь идет о цветном тонере, то в его состав дополнительно входят еще и красящие вещества.

Важно знать, что каждый производитель выпускает собственные оригинальные тонера – всем им присуща своя магнитность, дисперсность и прочие свойства.

Вот почему ни в коем случае нельзя заправлять картриджи случайными тонерами – это может негативно сказаться на его работоспособности.

Процесс рождения оттиска

Появление изображения или текста на бумаге будет состоять из таких последовательных этапов:

  • заряд барабана;
  • экспонирование;
  • проявка;
  • перенос;
  • закрепление.

Как работает фотозаряд? Он формируется на фотобарабане (где, как уже понятно, зарождается и само будущее изображение). Для начала происходит снабжение зарядом, который может быть как отрицательным, так и положительным. Происходит это одним из следующих способов.

  1. Используется коронатор , то есть вольфрамовая нить с покрытием из углеродных, золотых и платиновых включений. Когда в дело вступает высокое напряжение, между этой нитью каркасом проносится разряд, который, соответственно, создаст электрическое поле, передающее заряд на фотобарабан.
  2. Однако использование нити приводило со временем к проблемам с загрязнением и ухудшением качества распечатанного материала. Гораздо лучше действует ролик заряда с аналогичными функциями. Сам он похож на металлический вал, который покрыт токопроводящей резиной или поролоном. Идет соприкосновение с фотоцилиндром – в этот момент ролик и передает заряд. Напряжение здесь значительно ниже, но и детали изнашиваются гораздо быстрее.

Это и есть работа освещения, в результате чего часть фотоцилиндра становится токопроводящей и пропускает заряд через металлическое основание в барабане. А участок, подвергшийся экспонированию, становится незаряженным (или приобретает слабый заряд). На этом этапе формируется еще невидимое изображение.

Технически это осуществляется так.

  1. Лазерный луч падает на поверхность зеркала и отражается на линзу, которая распределит его в необходимое место на барабане.
  2. Так система линз и зеркал формирует строчку вдоль фотоцилиндра – лазер то включается, то выключается, заряд то остается нетронутым, то снимается.
  3. Строка закончилась? Фотобарабан повернется, и экспонирование продолжится снова.

Проявка

В этом процессе большое значение имеет магнитный вал из картриджа , похожий на трубку из металла, внутри которой находится магнитный сердечник. Часть поверхности вала помещена в заправочный тонер бункера. Магнит притягивает к валу порошок, и он выносится наружу.

Важно регулировать равномерность распределения слоя порошка – для этого существует специальное дозирующее лезвие . Оно пропускает лишь тонкий слой тонера, отбрасывая остальное назад. Если лезвие установлено неправильно, на бумаге могут появиться черные полосы.

После этого тонер продвигается на участок между магнитным валом и фотоцилиндром – здесь он притянется к проэкспонированным участкам, а от заряженных оттолкнется. Так изображение становится уже более видимым.

Перенос

Чтобы изображение появилось уже на бумаге, в дело вступает ролик переноса , в металлическую сердцевину которого притягивается положительный заряд – он переносится на бумагу благодаря специальному прорезиненному покрытию.

Итак, частички отрываются от барабана и начинают перемещаться на страницу. Но удерживаются они здесь пока только из-за статического напряжения. Образно говоря, тонер просто насыпается там, где нужно.

Вместе с тонером могут попасть пыль и ворсинки бумаги, но они снимаются вайпером (специальной пластиной) и отправляются прямиком в отсек отходов на бункере. После полного круга барабана процесс повторяется.

Для этого используется свойство тонера расплавляться при высоких температурах. Конструктивно это в этом оказывают помощь два следующих вала:

  • в верхнем расположен нагревательный элемент;
  • в нижнем в бумагу вдавливается расплавленный тонер.

Иногда подобная «печка» представляет собой термопленку – специальный гибкий и термостойкий материал с нагревательной составляющей и прижимным роликом. Её нагрев контролируется датчиком. Как раз в момент прохода между пленкой и прижимной частью бумага и разогревается до 200 градусов, что позволяет ей легко впитать в себя ставшим жидким тонер.

Дальнейшее остывание идет естественным образом – в лазерных принтерах обычно не требуется установка дополнительной охлаждающей системы. Однако здесь еще раз проходит специальный очиститель – обычно его роль исполняет фетровый вал .

Фетр обычно пропитывают специальным составом, что помогает смазать покрытие. Поэтому другое название такого вала – масляной.

Как осуществляется цветная лазерная печать

А как же происходит цветная печать? В лазерном устройстве используется четыре таких основных колора – черный, пурпурный, желтый и голубой. Принцип печати такой же, как и в черно-белом случае, однако сначала принтер разобьет изображение на монохром для каждого цвета. Начинается последовательное перенесение каждым картриджем своего цвета, а в итоге наложения получается нужный результат.

Выделяют такие технологии цветной лазерной распечатки:

  • многопроходная;
  • однопроходная.

При многопроходном варианте в дело вступает промежуточный носитель – это вал или лента, переносящая тонер. Действует это так: за 1 оборот накладывается 1 цвет, потом в нужное место подается другой картридж, а поверх первой картинки ложится вторая. Достаточно четырех проходов, чтобы сформировалась полноценная картинка – она и перейдет на бумагу. Но и само устройство будет работать в 4 раза медленнее, чем его черно-белый собрат.

Как работает принтер с однопроходной технологией ? В этом случае все четыре отдельно печатающих механизма имеют общее управление – они выстроены в одну шеренгу, у каждого имеется свой собственный лазерный блок с переносным роликом. Так бумага и идет по барабану, последовательно собирая все четыре изображения картриджей. Только после этого прохода лист уходит в печку, где происходит закрепление картинки.

Достоинства лазерных принтеров сделали их фаворитами для работы с документацией, как в офисе, так и домашних условиях. А информация о внутренней составляющей их работы поможет любому пользователю вовремя заметить недочеты и обратиться в сервисную службу для технической поддержки функционирования устройства.

Множество людей пользовались лазерными принтерами, у некоторых они стоят дома, но все ли знают, как работает лазерный принтер? Ответ на этот вопрос читатель найдет в этой статье.

Лазерный принтер – это периферийное устройство, которое быстро и качественно напечатает текст и графические объекты на обычной офисной и специальной бумаге. Основные преимущества этих принтеров, такие как низкая себестоимость печати, большая скорость работы, высокий ресурс и разрешение, стойкость к влаге и выцветанию сделали их самыми часто используемыми не только в среде офисных работников, но и среди обычных пользователей.

Создание и развитие лазерных принтеров

Первое изображение с использованием сухих чернил и статичного электричества получил Честер Карлсон в далеком 1938 году. И лишь спустя 8 лет он смог найти производителя изобретенных им устройств. Это была компания, которую ныне все знаю под названием Xerox. И в тот же 1946 год на рынок попадает первое копировальное устройство. Это была огромная и сложная машина, требующая проведения целого ряда ручных операций. Лишь в средине 1950-х был создан первый полностью автоматизированный механизм, который являлся прообразом современного лазерного принтера.

С конца 1969 года Xerox начинает работу над разработкой лазерных принтеров, добавив лазерный луч к существующим на то время образцам. Но стоял он треть миллиона долларов по тем меркам и имел огромные размеры, что не позволяло пользоваться таким устройством даже на небольших предприятиях, не то что в быту.

Результатом сотрудничества нынешних гигантов в индустрии печати Canon и HP стал выпуск в свет серии принтеров LaserJet, которые способны напечатать до 8 страниц текста в минуту. Такие устройства стали более доступными после того, как появился первый сменяемый картридж для лазерного принтера.

Принцип работы

Основой формирования изображения является краситель, содержащийся в тонере. Под действием статического электричества он прилипает и буквально впечатывается в бумагу. Но каким образом это происходит?

Любой лазерный принтер состоит из трех основных функциональных блоков: печатная плата, блок переноса изображения (картридж) и печатный блок. Бумагу на печать подает узел подачи бумаги. Они разрабатываются по двум конструкциям – подача бумаги из нижнего лотка и подача из верхнего лотка.

Его строение достаточно простое:

  • ролик – нужен для захвата бумаги;
  • блок для захвата и подачи одного листа;
  • ролик, передающий статический заряд бумаге.
  • Картридж для лазерного принтера состоит из двух частей – это тонер и барабан или фотоцилиндр.

Тонер

Тонер состоит из микроскопических частичек полимеров, которые покрыты красителем, с включением магненита и регулятора заряда. Каждая фирма выпускает порошок с уникальными характеристиками для собственных принтеров и многофункциональных устройств. Все порошки отличаются магнитностью, плотностью, дисперстностью, размером зерен и другими физическими показателями. Поэтому не стоит заправлять картриджи случайным тонером. Преимущества тонера перед чернилами заключаются в четкости отпечатанной картинки и влагостойкости, которая обеспечивается впечатыванием порошка в бумагу. Из недостатков стоит назвать малую глубину цветов, насыщенность при цветной печати и отрицательное воздействие на организм человека при взаимодействии с тонером, например, во время зарядки картриджа.

Строение и этапы печати изображений

Фотобарабан выполнен в виде продольного алюминиевого вала, с нанесенным на него тонким слоем материала, чувствительного к световым лучам с определенными параметрами. Цилиндр покрыт защитным слоем. Помимо алюминия, барабаны изготовляются с неорганических фоточувствительных веществ. Основное свойство фотобарабана – изменение проводимости (заряда) под воздействием лазерного луча. Это значит, что если цилиндру придать заряд – он будет хранить его на протяжении значительного отрезка времени. Но если засветить какую-либо область вала светом – они тут же теряют свой заряд и становятся нейтрально заряженными за счет увеличения проводимости (то есть уменьшением электрического сопротивления) в этих зонах. Заряд стекает с поверхности через внутренний проводящий слой.

При поступлении документа на печать, печатная плата обрабатывает его и посылает соответствующие световые импульсы на блок переноса изображения, где цифровая картинка превращается в изображение на бумаге. Фотобарабан вращается при помощи вала и получает первичный отрицательный или положительный заряд от находящегося рядом роллера. Его величина определяется настройками печати, которые сообщает печатная плата.

После зарядки цилиндра лазерный луч, имеющий горизонтальную развертку, сканирует его с огромной частотой. Засвеченные места фотоцилиндра, как сказано выше, становятся незаряженными. Эти незаряженные зоны формируют требуемую картинку на барабане в зеркальном отображении. Далее, чтобы изображение оказалось на бумаге, незаряженные зоны необходимо заполнить тонером. Блок лазерного сканирования состоит из зеркала, полупроводникового лазера, нескольких формирующих и одной фокусирующей линзы.

Барабан контактирует с роллером, изготовленным, в основном, из магния и подает тонер на фотоцилиндр из емкости картриджа. Роллер, в котором расположен постоянный магнит, выполнен в виде пустотелого цилиндра с токопроводящим слоем. Под воздействием магнитного поля тонер из бункера притягивается к роллеру под действием силы намагниченного сердечника.

Под действием электростатического напряжения тонер из роллера будет переноситься на сформированное лазерным лучом изображение на поверхности фотобарабана, крутящегося вплотную с роллером. Тонеру некуда деться, ведь его отрицательно заряженные частицы притягиваются к положительно заряженным областям фотоцилиндра, на котором сформировано нужное изображение. Отрицательный заряд барабана отталкивает ненужное количество тонера назад, заполняя им отсканированные лазером участки.

Отметим один нюанс. Существует два типа формирования изображений. Самый распространенный – это применение тонера с положительным зарядом. Такой порошок остается на нейтрально заряженных областях фотоцилиндра. То есть, лазером засвечиваются области, где будет наше будущее изображение. Барабан при этом заряжен отрицательно. Второй механизм менее распространенный, в нем используется тонер с отрицательным зарядом. Лазерный луч «разряжает» области положительно заряженного фотоцилиндра, на которых изображения быть не должно. Это стоит помнить при выборе лазерного принтера, ведь в первом случае будет более точная передача деталей, а во втором – более равномерная и плотная заливка. Первые принтеры отлично подойдут для печати текстовых документов, потому они и получили широкое распространение.

Перед тем, как соприкоснуться с цилиндром бумага получает статический электрический заряд с помощью ролика переноса заряда. Под воздействием, которого тонер притягивается к бумаге в момент ее плотного контакта с барабаном. Сразу после этого заряд из бумаги удаляется нейтрализатором статичного заряда. Этим устраняется притягивания листа к фотоцилиндру. Во время прохода бумаги сквозь блок лазерного сканирования на листе становится заметным сформированное изображение, которое легко разрушается от малейшего прикосновения. Для его долговечности необходимо провести фиксацию с помощью расплавления добавок, входящих в тонер. Этот процесс происходит в блоке фиксации изображения – это третий ключевой блок лазерного принтера. Еще его называют «печкой». Если вкратце, то плавятся входящие в состав тонера вещества. После их вдавливания и застывания эти полимеры словно покрывают собой чернила, защищая их от внешних воздействий. Теперь читатель поймет, почему отпечатанные листы, выходящие из принтера, такие теплые.

По конструкции так называемая «печка» состоит из двух валов, в одном из которых находится нагревательный элемент. Второй, зачастую нижний, необходим для вдавливания расплавленного полимера в бумагу. Нагревательные элементы выполняются в виде термисторов, изготовленных в виде термопленок. При подаче напряжения на них, эти элементы разогреваются до высоких температур (порядка 200 °C) за доли секунды. Прижимный валик прижимает лист к нагревателю, в процессе чего осуществляется вдавливание жидких микроскопических частиц тонера в текстуру бумаги. На выходе из блока фиксации стоят разделители, дабы бумага не прилипала к термопленке.

Лазерный принтер – одно из оригинально разработанных электронных устройств, чья работа основана на ксерографировании или электрофотографии. Но если Вам интересно как работают лазерные принтеры, выдавая четкие и ровно напечатанные страницы, то для Вас будет интересно прочитать эту статью. В этой статье мы попробуем вкратце дать объяснение принципу работы лазерного принтера.

Лазерные принтеры способны распечатывать страницы быстрее, чем старые матричные и струйные принтеры. Кроме превосходства перед другими принтерами в скорости, лазерный принтер превосходит их в точности печати. Но как лазер, который представляет собой монохроматический луч света, способствует процессу печати в принтере? В этой статье мы постараемся выяснить, на каком принципе основана работа лазерного принтера. Прочитав эту статью, Вы наверняка будете больше ценить это удивительное электронное изобретение.

О лазерном принтере

Гари Старквезер изобрел лазерный принтер в 1969 году, работая на ксероксе. Он использовал принцип ксерографической печати, усовершенствовав тем самым скорость печати, в прошествии нескольких десятилетий данный принтер быстро завоевал рынок. Первый коммерческий вариант лазерного принтера была модель IBM 3800, которая имела размер большой комнаты. В процессе технологического развития лазерный принтер также усовершенствовался и стал значительно меньше в размерах, более аккуратным, и стал гораздо быстрее распечатывать страницы. Технология производства, которая изначально стоила тысячи долларов, в настоящее время очень сильно изменилась, а стоимость лазерного принтера не превышает 100 долларов. Портативные лазерные принтеры являются главным выбором в большинстве учреждений. Итак, давайте разберемся, как так получилось, что лазерный принтер способен печатать около 200 страниц в минуту

Как работает лазерный принтер?

Чтобы выяснить, как работает лазерный принтер необходимо понять лишь единственный физический закон – «разноимённые заряды притягиваются, а одноимённые заряды отталкиваются». Давайте проследим работу лазерного принтера при каждом шаге печати страницы. Вы загружаете в отсек принтера чистую бумагу и подаёте команду на печать, через несколько секунд Вы получаете аккуратно распечатанные страницы. Но, что происходит в эти несколько секунд!?

  1. Шаг1: Орган управления принтера получает набор данных и создаёт растровое изображение
    Как только Вы подали команду принтеру на печать, персональный компьютер кодирует информацию страницы с помощью специального машинного «языка управления печатью». Затем кодированную информацию получает орган управления принтера, он считывает её и подготавливает страницу согласно исходным условиям печати, а затем подаёт сигнал устройству для растрового сканирования, которое в свою очередь уже преобразовывает сигнал в битовое или растровое изображение. Изображение временно сохраняется в памяти принтера, после чего начинается процесс печати.
  2. Шаг2: Вращающийся барабан фоторецептора обладает положительным зарядом
    Центральным местом лазерного принтера является барабан с фотопроводящей поверхностью, которая обладает определённым зарядом до тех пор, пока на неё не будет подан свет лазера, который в свою очередь заставляет эту поверхность разряжаться. Попадая на определённую область поверхности барабана, фотоны света (элементарные частицы, квант электромагнитного излучения) в этом месте увеличивают проводимость и заставляют эту область разряжаться. Т.е. можно сказать, что фотоны света убирают заряды из области попадания фотонов на поверхности вращающегося барабана.
    Поддержание постоянного заряда поверхности барабана происходит благодаря использованию скоротрона (натянутый провод, который находится под напряжением относительно барабана). Заряд на поверхности может быть как положительным, так и отрицательным. Давайте договоримся, что в дальнейшем барабан обладает положительным зарядом.
  3. Шаг3: Лазер делает электростатический рисунок страницы на фоточувствительной поверхности
    В процессе печати вращающийся барабан подвергается воздействию луча лазера. Используя целый комплекс из зеркал и линз, лазер набрасывает битовое изображение на поверхности барабана. Согласно условиям печати растровый процессор направляет лазерный луч на движущуюся фоточувствительную поверхность барабана. Области, в которых фотоны попадают на поверхность, разряжается, создавая сеть с отрицательным зарядом на положительно заряженной поверхности вращающегося барабана. Часть за частью, цельное битовое или растровое изображение вытравливается на поверхности в виде отрицательной электростатической картинки. Представьте оконное стекло, покрытое пылью. Вы можете на таком окне что-то нарисовать, стирая пыль со стекла пальцем, также и лазер рисует нужную картинку на поверхности барабана, стирая с неё положительные заряды.
  4. Шаг:4 Положительно заряженные частицы тонера (красящего порошка) встраиваются в области с отрицательными зарядами
    В ходе своей работы вращающийся барабан взаимодействует с положительно заряженными частицами тонера, который располагается в специальном бункере. Тонер представляет собой сухой порошок, сделанный из пигмента и пластичного полимера. Т.к. разноимённые заряды притягиваются, одноимённые заряды отталкиваются, то положительно заряженная поверхность барабана отталкивает частицы тонера. Но отрицательно заряженные (разраженные) области этой поверхности, которые в целом составляют электростатическую картину страницы, притягивают частицы тонера. Именно таким образом частицы тонера внедряются на поверхность барабана, прямо на места электростатической картины страницы.
  5. Шаг5: Чистая страница пропускается через барабан, происходить печать
    На данном этапе содержащийся на поверхности барабана тонер соприкасается с отрицательно заряженным чистым листом бумаги. Как только поверхность бумаги соприкасается с барабаном, уже положительно заряженные частицы тонера прилипают к бумаге, создавая необходимую нам страницу. После этого листок бумаги выкатывается из барабана, с прикреплёнными на нём частицами тонера.
  6. Шаг 6: С помощью нагретых роликов тонер закрепляется на бумаге
    Листок бумаги с нанесённым тонером пропускается через нагретую тефлоновую поверхность специально предусмотренных роликов, при этом расплавляется содержащийся в тонере пластик, что окончательно прикрепляет тонер к бумаге. И в конечном итоге мы получаем точную физическую копию имеющегося в электронном виде документа! Лист бумаги выкатывается из принтера, и мы можем использовать распечатанный документ в своих целях.

Таким образом, использование ксерографической техники печати, лазера, с помощью которого вытравливается электростатическая картинка страницы на положительно заряженной фоточувствительной поверхности специального вращающегося барабана, происходит точное присоединение заряженных частиц тонера к фоточувствительной поверхности барабана. Благодаря всему этому лазерный принтер предоставляет нам чётко напечатанные страницы на необыкновенно высокой скорости печати. Если сравнить лазерный и струйный принтер, лазерный принтер в этом случае будет вне конкуренции именно благодаря технологии, применяемой в нём. В то время как струйному принтеру необходимо распылять чернила, лазерному принтеру остаётся только позволить частицам тонера прикреплять к фоточувствительной поверхности, что естественно делает процесс печати проще и аккуратнее. Мы надеемся, что этот короткое описание, объясняющее принцип работы лазерного принтера, было для Вас интересным. Лазерный принцип – это отличный демонстрация того, что соединение простых научных законов могут удачно служить человеку.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: