Гигабитная сеть Ethernet. Gigabit Ethernet сетевой адаптер PCI Express экранированные витые пары

Решил я себе немного проапгрейдить компьютер, а так как мне надо было 2 сетевые карты и слотов не хватало, то понадобилась сетевая карта в PCI-E слот. Времени было достаточно потому решил купить на алиэкспрессе.

Нашел, по описанию полностью устроила, по цене тоже. При проверке продавца показало, что уровень риска практически нулевой. Заказал, посылка пришла через 20 дней после отправки продавцом. Кстати, сейчас у продавца скидка или распродажа, но карта стоит 3.63.



Но так как я не очень доверяю китайским производителям, то сначала внимательно посмотрел на плату. Интуиция меня не обманула, главная микросхема была припаяна мало того что со смещением, но еще и были залипы припоя в трех местах (обозначены стрелочками).

Я не стал особо разбираться за что отвечают данные выводы, но залип был на ногах связи с микросхемой памяти, и выводы питания, т.е. плата гарантированно не определилась бы как минимум, как максимум я бы остался без нового компа.

Ну и конечно смешное обозначение скорости линка в Герцах.

Не вставляя в комп написал продавцу, что мол посылку получил, но не работает, плохо припаяна микросхема. На что он ответил что мол пришлите видео. Что он там собирался разглядеть, мне непонятно. Сказал ему что попробую сделать фото, но такое все мелкое, что врядли он что то увидит. Отправил сообщение.

Не дождавшись ответа взял паяльник, убрал сопли, проверил карту - работает.

Определилась карта как Realtek PCIe GBE Family Controller, а из-за у меня уже были установлены драйверы Realtek, то карта стала работать сразу, ничего доустанавливать не пришлось.
Диспетчер оборудование пишет о ней -
PCI\VEN_10EC&DEV_8168&SUBSYS_816810EC&REV_02\4&293AFFCC&1&00E0

Протестировал скорость копирования, правда все уперлось в скорость порта роутера (с удивлением обнаружил, что мне нечем протестировать карту на гигабитной скорости), пока нечем протестировать гигабит, да и если честно, пока не вижу в нем крайней необходимости, хватает и 100 мегабит, но 100 мегабит PCI-E как то не видел, потому пускай живет. Тем более, что за эти деньги я у нас врядли куплю.

В итоге написал продавцу что чип перепаял, карта работает, получение подтвержу, но очень недоволен. Качество изготовления очень плохое. В итоге продавец предложил возврат в 3 доллара, я согласился, собственно к продавцу у меня претензий особо не было, на контакт шел сразу и без проблем.

Но суть не в этом, мораль данного микро-обзора в том, что на всякий случай перед тем, как вставить себе в компьютер новую железку, не поленитесь внимательно осмотреть ее, что бы не остаться без компьютера вообще.

В общем доставка отлично, карта самая банальная, цена приемлемая, доставка быстрая, но качество хромает и довольно сильно.

Наверное так собирали мою сетевку

Планирую купить +6 Добавить в избранное Обзор понравился +28 +50

Введение

Сети на основе 10/100 Мбит/с Ethernet будет более чем достаточно для выполнения любых задач в небольших сетях. Но как насчет будущего? Вы подумали о потоках видео, которые будут проходить по сети вашего дома? Справится ли с ними 10/100 Ethernet?

В нашей первой статье, посвященной гигабитному Ethernet, мы вплотную с ним познакомимся и определим, нужен ли он вам. Мы также постараемся узнать, что вам потребуется для создания «готовой к гигабиту» сети и проведем краткий экскурс в гигабитное оборудование для небольших сетей.

Что такое гигабитный Ethernet?

Гигабитный Ethernet также известен как «гигабит по меди» или 1000BaseT . Он представляет собой обычную версию Ethernet, работающую на скоростях до 1.000 мегабит в секунду, то есть в десять раз быстрее 100BaseT.

Основой гигабитного Ethernet является стандарт IEEE 802.3z , который был утвержден в 1998 году. Однако в июне 1999 года к нему вышло дополнение — стандарт гигабитного Ethernet по медной витой паре 1000BaseT . Именно этот стандарт смог вывести гигабитный Ethernet из серверных комнат и магистральных каналов, обеспечив его применение в тех же условиях, что и 10/100 Ethernet.

До появления 1000BaseT для гигабитного Ethernet необходимо было использовать волоконно-оптический или экранированный медный кабели, которые вряд ли можно назвать удобными для прокладки обычных локальных сетей. Данные кабели (1000BaseSX, 1000BaseLX и 1000BaseCX) и сегодня используются в специальных областях применения, поэтому мы не будем их рассматривать.

Группа гигабитного Ethernet 802.3z прекрасно справилась со своей работой — она выпустила универсальный стандарт, в десять раз превышающий скорость 100BaseT. 1000BaseT также является обратно совместимым с 10/100 оборудованием, он использует CAT-5 кабель (или более высокую категорию). Кстати, сегодня типичная сеть построена именно на базе кабеля пятой категории.

Нужен ли он нам?

В первой литературе о гигабитном Ethernet в качестве области применения нового стандарта указывался корпоративный рынок, и чаще всего — связь хранилищ данных. Поскольку гигабитный Ethernet обеспечивать в десять раз больший канал, чем привычный 100BaseT, естественным применением стандарта является соединение участков, требующих высокую пропускную способность. Это связь между серверами, коммутаторами и магистральными узлами. Именно там гигабитный Ethernet необходим, нужен и полезен.

По мере снижения цен на гигабитное оборудование область применения 1000BaseT расширилась до компьютеров «опытных пользователей» и рабочих групп, использующих «требовательные к пропускной способности приложения».

Поскольку потребности в передаче данных у большинства небольших сетей более чем скромные, вряд ли им когда-нибудь понадобится пропускная способность сети 1000BaseT. Давайте рассмотрим некоторые типичные области применения небольших сетей и оценим их потребность в гигабитном Ethernet.

Нужен ли он нам, продолжение

  • Передача больших файлов по сети

    Подобное применение характерно, скорее, для малых офисов, особенно в компаниях, занимающихся графическим дизайном, архитектурой или другим бизнесом, связанным с обработкой файлов размером в десятки-сотни мегабайт. Вы легко подсчитаете, что 100-мегабайтный файл будет передан по 100BaseT сети всего за восемь секунд [(100Мбайт x 8бит/байт)/ 100 Мбит/с]. В действительности же многие факторы ухудшают скорость передачи, так что ваш файл будет передаваться несколько дольше. Некоторые из этих факторов связаны с операционной системой, запущенными приложениями, количеством памяти на ваших компьютерах, скоростью процессора и возрастом. (Возраст системы влияет на скорость шин на материнской плате).

    Еще одним важным фактором является скорость сетевого оборудования, и переход на гигабитное оборудование позволяет устранить потенциальное узкое место и ускорить передачу больших объемов файлов. Многие подтвердят, что получение скоростей выше 50 Мбит/с на 100BaseT сети — дело отнюдь не тривиальное. Гигабитный же Ethernet сможет обеспечить пропускную способность выше 100 Мбит/с.

  • Сетевые устройства резервирования

    Можно рассматривать этот случай как вариант «больших файлов». Если ваша сеть настроена на резервирование всех компьютеров на один файловый сервер, то гигабитный Ethernet позволит вам ускорить этот процесс. Однако здесь существует и подводный камень — увеличение «трубы» пропускания к серверу может не привести к положительному эффекту, если сервер не будет успевать обрабатывать входящий поток данных (также это касается и носителя резервной информации).

    Для получения выгоды от высокоскоростной сети вам следует оснастить сервер большим объемом памяти и проводить резервирование на быстрый жесткий диск, а не ленту или CDROM. Как видим, к переходу на гигабитный Ethernet следует основательно подготовиться.

  • Приложения клиент-сервер

    Эта область применения опять же более характерна для сетей малого бизнеса, чем для домашних сетей. Между клиентом и сервером в подобных приложениях может передаваться большой объем данных. Подход прежний: вам необходимо проанализировать объем передающихся сетевых данных, чтобы узнать, сможет ли приложение «успеть» за увеличением пропускной способности сети и достаточно ли этих данных для нагрузки гигабитного Ethernet.

По правде говоря, мы считаем, что вряд ли большинство «строителей» домашних сетей найдут достаточно оснований для покупки гигабитного оборудования. В сетях малого бизнеса переход на гигабит может помочь, но мы рекомендуем сначала провести анализ количества передаваемых данных. С современным состоянием все понятно. Но что делать, если вы желаете учесть возможность будущей модернизации. Что вам нужно сделать сегодня, чтобы быть к ней готовым? В следующей части нашей статьи мы рассмотрим изменения, которые необходимо осуществить с самой дорогой, чаще всего и самой трудоемкой, части сети — кабелем .

Кабель для гигабитного Ethernet

Как мы уже упоминали во введении, одним из ключевых требований стандарта 1000BaseT является использования кабеля категории 5 (CAT 5) или выше. То есть гигабитный Ethernet может работать на существующей кабельной структуре 5 категории . Согласитесь, подобная возможность очень удобна. Как правило, все современные сети используют кабель пятой категории, если только ваша сеть не была установлена в 1996 году или раньше (стандарт был утвержден в 1995 году). Однако здесь существует несколько подводных камней.

  • Требуется четыре пары

    Как видно из этой статьи , 1000BaseT использует все четыре пары кабеля категории 5 (или выше) для создания четырех 250 Мбит/с каналов. (Также применяется и другая схема кодирования — пятиуровневая амплитудно-импульсная модуляция — чтобы оставаться в пределах частотного диапазона 100 МГц CAT5). В результате мы можем использовать для гигабитного Ethernet существующую кабельную структуру CAT 5.

    Поскольку 10/100BaseT использует только две пары CAT 5 из четырех, некоторые люди не подключали лишние пары при прокладке своих сетей. Пары использовались, к примеру, для телефона или для питания по Ethernet (POE). К счастью гигабитные сетевые карты и коммутаторы обладают достаточным интеллектом, чтобы откатиться на стандарт 100BaseT если все четыре пары будут недоступны. Поэтому ваша сеть в любом случае будет работать с гигабитными коммутаторами и сетевыми картами, но высокой скорости за уплаченные деньги вы не получите.

  • Не используйте дешевые разъемы

    Еще одна проблема самодеятельных сетевиков — плохая обжимка и дешевые настенные розетки. Они приводят к несоответствиям импеданса, в результате чего возникают обратные потери, а вследствие них и уменьшение пропускной способности. Конечно, вы можете попробовать поискать причину «в лоб», но все же вам лучше обзавестись сетевым тестером, который сможет обнаружить обратные потери и перекрестные помехи. Или просто смириться с низкой скоростью.

  • Ограничения по длине и топологии

    1000BaseT ограничен той же максимальной длиной сегмента, что и 10/100BaseT. Таким образом, максимальный диаметр сети составляет 200 метров (от одного компьютера до другого через один коммутатор). Что касается топологии 1000BaseT, то здесь работают те же правила, что и для 100BaseT, за исключением допустимости лишь одного повторителя на сегмент сети (или, если быть более точным, на один «полудуплексный домен коллизий»). Но поскольку гигабитный Ethernet не поддерживает полудуплексную передачу, вы можете забыть о последнем требовании. В общем если ваша сеть прекрасно себя чувствовала под 100BaseT, у вас не должно возникнуть проблем при переходе к гигабиту.

Кабель для гигабитного Ethernet, продолжение

Для прокладки новых сетей лучше всего использовать кабель CAT 5e . И хотя CAT 5 и CAT 5e оба пропускают частоту 100 МГц , кабель CAT5e производится с учетом дополнительных параметров, важных для лучшей передачи высокочастотных сигналов.

Просмотрите следующие документы Belden, чтобы подробнее узнать о спецификациях CAT 5e кабеля (на английском):

И хотя современный CAT 5 кабель будет прекрасно работать с 1000BaseT, вам лучше все же выбрать CAT 5e, если вы хотите гарантировать высокую пропускную способность. Если же вы колеблетесь, прикиньте стоимость кабеля CAT 5 и CAT 5e и действуйте по своим средствам.

Единственное, чего вам следует избегать — рекомендаций по покупке CAT 6 кабеля для гигабитного Ethernet. CAT 6 был добавлен в стандарт TIA-568 в июне 2002 года и он пропускает частоты до 200 МГц . Продавцы наверняка будут уговаривать вас купить именно более дорогую шестую категорию, но она вам понадобится, только если вы планируете построить сеть 10 Гбит/с Ethernet по медной проводке, что на данный момент вряд ли реально. А что насчет кабеля CAT 7? Забудьте про него!

Если же вы располагаете хорошей суммой, то лучше ее потратить на специалиста-сетевика , который обладает достаточным опытом прокладки гигабитных сетей . Специалист сможет грамотно проложить кабели или проверить вашу существующую сеть на работу с гигабитным Ethernet. При установке кабеля CAT 6 мы крайне рекомендуем обратиться за помощью к профессионалам, поскольку этот кабель оговаривает радиус сгиба и специальные качественные разъемы.

Гигабитное оборудование

В некотором роде вопрос «гигабит или нет» мог быть предметом спора год или пару лет назад. Если смотреть с точки зрения покупателя SOHO, переход от 10 к 10/100 Мбит/с уже случился. Новые компьютеры оснащаются 10/100 Ethernet портами, маршрутизаторы уже используют встроенные 10/100 коммутаторы, а не 10BaseT концентраторы. Однако подобная перемена не является следствием требований и пожеланий домашних «сетевиков». Они довольствуются существующим оборудованием.

За эти изменения нам следует благодарить корпоративных пользователей, которые покупают сегодня в массовых количествах только 10/100 оборудование, что позволяет опустить на него цены. Как только производители потребительского оборудования обнаружили, что использовать 10BaseT чипы по сравнению с 10/100 вариантам дороже , они долго не раздумывали.

Таким образом, вчерашняя архитектура на базе 10BaseT концентраторов незаметно перешла в современные 10/100 коммутируемые сети. Точно такой же переход мы испытаем и с 10/100 на 10/100/1000 Мбит/с. И хотя до переломного момента осталось еще год или два, переход уже начался и цены неуклонно продолжают свое падение вниз.

Все что вам нужно — купить гигабитную сетевую карту и гигабитный коммутатор. Давайте рассмотрим их чуть подробнее.

  • Сетевые карты

    Фирменные 32-битные PCI 10/100/1000BaseT сетевые карты типа Intel PRO1000 MT, Netgear GA302T и SMC SMC9552TX стоят в Интернете от $40 до $70. Продукты производителей второго эшелона дешевле примерно на $5. И хотя гигабитные сетевые карты приблизительно в два с половиной раза дороже средних 10/100 карт, вряд ли ваш кошелек вообще заметит какую-либо разницу, если только вы не закупаете их оптовыми партиями.

    Вы можете найти сетевые карты, поддерживающие не только 32-битную шину PCI, но и 64-битную, однако и стоят они дороже. Чего вы не увидите, так это CardBus адаптеров для ваших ноутбуков. По каким то причинам производители считают, что ноутбукам гигабитные сети вообще не нужны.

  • Коммутаторы

    А вот цена 10/100/1000 коммутаторов заставляет десять раз подумать о целесообразности перехода на гигабитный Ethernet. Хорошая новость: сегодня уже появились прозрачные гигабитные коммутаторы, которые стоят гораздо дешевле своих управляемых собратьев для корпоративного рынка.

    Простой четырехпортовый 10/100/1000 коммутатор Netgear GS104 можно купить меньше чем за $225. Если вы остановите свой выбор на менее известных фирмах типа TRENDnet TEG-S40TXE, то уменьшите стоимость до $150. Мало четырех портов — пожалуйста. Восьмипортовая версия Netgear GS108 обойдется вам примерно в $450, а TRENDnet TEG-S80TXD — около $280.

    Учитывая, что пятипортовый 10/100 коммутатор сегодня стоит всего $20, цены на гигабит кому-то покажутся слишком высокими. Но вспомните: еще совсем недавно вы могли купить только управляемые гигабитные коммутаторы стоимостью $100+ за порт. Цены идут в правильном направлении!

Придется ли менять компьютеры?

Откроем небольшой секрет гигабитного Ethernet: под Win98 или 98SE вы, скорее всего, не получите никакого преимущества от гигабитной скорости. И хотя с помощью редактирования реестра можно попытаться улучшить пропускную способность, вы все равно не получите существенного прироста производительности по сравнению с текущим 10/100 оборудованием.

Проблема кроется в TCP/IP стеке Win98, который не был разработан с учетом высокоскоростных сетей. У стека возникают проблемы даже с использованием 100BaseT сети, чего уж тогда говорить о гигабитной связи! Мы еще вернемся к этому вопросу во второй статье, но пока что вам следует рассматривать только Win2000 и WinXP для работы с гигабитным Ethernet.

Последним предложением мы отнюдь не подразумеваем, что только Windows 2000 и XP поддерживают гигабитные сетевые карты. Мы просто не проверяли производительность под другими операционными системами, так что воздержитесь, пожалуйста, от язвительных замечаний!

Если вы интересуетесь, придется ли вам выбрасывать старый добрый компьютер и покупать новый для использования гигабитного Ethernet, то наш ответ — «возможно». Судя по нашем практическому опыту, один герц «современных» процессоров равняется одному биту в секунду пропускной способности сети . Один из производителей гигабитного сетевого оборудования согласился с нами: любая машина с тактовой частотой 700 МГц или ниже не сможет в полной мере использовать пропускную способность гигабитного Ethernet. Так что даже с правильной операционной системой старым компьютерам гигабитный Ethernet — все равно, что мертвому припарки. Вы скорее увидите скорости 100-500 Мбит/с

Я не очень торопился перевести свою домашнюю сеть со скорости 100 Мбит/с на 1 Гбит/с, что для меня довольно странно, поскольку я передаю по сети большое количество файлов. Однако когда я трачу деньги на апгрейд компьютера или инфраструктуры, я считаю, что должен сразу же получить прирост производительности в приложениях и играх, которые я запускаю. Многие пользователи любят потешить себя новой видеокартой, центральным процессором и каким-нибудь гаджетом. Однако по каким-то причинам сетевое оборудование не привлекает такого энтузиазма. Действительно, сложно вложить заработанные деньги в сетевую инфраструктуру вместо очередного технологического подарка на день рождения.

Однако требования по пропускной способности у меня очень высоки, и в один момент я понял, что инфраструктуры на 100 Мбит/с уже не хватает. У всех моих домашних компьютеров уже установлены интегрированные адаптеры на 1 Гбит/с (на материнских платах), поэтому я решил взять прайс-лист ближайшей компьютерной фирмы и посмотреть, что мне потребуется для перевода всей сетевой инфраструктуры на 1 Гбит/с.

Нет, домашняя гигабитная сеть вовсе не такая сложная.

Я купил и установил всё оборудование. Я помню, что раньше на копирование большого файла по 100-Мбит/с сети уходило около полутора минут. После апгрейда на 1 Гбит/с тот же файл стал копироваться за 40 секунд. Прирост производительности приятно порадовал, но всё же я не получил десятикратного превосходства, которое можно было ожидать из сравнения пропускной способности 100 Мбит/с и 1 Гбит/с старой и новой сетей.

В чём причина?

Для гигабитной сети все её части должны поддерживать 1 Гбит/с. Например, если у вас установлены гигабитные сетевые карты и соответствующие кабели, но концентратор/коммутатор поддерживает всего 100 Мбит/с, то и вся сеть будет работать на 100 Мбит/с.

Первое требование - сетевой контроллер. Лучше всего, если каждый компьютер в сети будет оснащён гигабитным сетевым адаптером (отдельным или интегрированным на материнскую плату). Это требование удовлетворить проще всего, поскольку большинство производителей материнских плат пару последних лет интегрируют гигабитные сетевые контроллеры.

Второе требование - сетевая карта тоже должна поддерживать 1 Гбит/с. Есть распространённое заблуждение, что для гигабитных сетей требуется кабель категории 5e, но на самом деле даже старый кабель Cat 5 поддерживает 1 Гбит/с. Впрочем, кабели Cat 5e обладают лучшими характеристиками, поэтому они будут более оптимальным решением для гигабитных сетей, особенно если длина у кабелей будет приличная. Впрочем, кабели Cat 5e сегодня всё равно самые дешёвые, поскольку старый стандарт Cat 5 уже устарел. Новые и более дорогие кабели Cat 6 обладают ещё лучшими характеристиками для гигабитных сетей. Мы сравним производительность кабелей Cat 5e против Cat 6 чуть позже в нашей статье.

Третий и, наверное, самый дорогой компонент в гигабитной сети - это концентратор/коммутатор с поддержкой 1 Гбит/с. Конечно, лучше использовать коммутатор (возможно, в паре с маршрутизатором), поскольку концентратор или хаб - не самое интеллектуальное устройство, просто транслирующее все сетевые данные по всем доступным портам, что приводит к появлению большого числа коллизий и замедляет производительность сети. Если вам нужна высокая производительность, то без гигабитного коммутатора не обойтись, поскольку он перенаправляет сетевые данные только на нужный порт, что эффективно увеличивает скорость работы сети по с равнению с концентратором. Маршрутизатор обычно содержит встроенный коммутатор (с несколькими портами LAN), а также позволяет подключать вашу домашнюю сеть к Интернету. Большинство домашних пользователей понимают преимущества маршрутизатора, поэтому гигабитный маршрутизатор - вариант вполне привлекательный.

Насколько быстрым должен быть гигабит? Если вы слышите префикс "гига", то наверняка подразумеваете 1000 мегабайт, при этом гигабитная сеть должна обеспечивать 1000 мегабайт в секунду. Если вы так считаете, то вы не одиноки. Но, увы, в действительности всё иначе.

Что же такое гигабит? Это 1000 мегабит, а не 1000 мегабайт. В одном байте 8 битов, поэтому просто посчитаем: 1 000 000 000 битов разделить на 8 битов = 125 000 000 байтов. В мегабайте около миллиона байтов, поэтому гигабитная сеть должна обеспечивать теоретическую максимальную скорость передачи данных около 125 Мбайт/с.

Конечно, 125 Мбайт/с звучит не так впечатляюще, как гигабит, но подумайте: сеть с такой скоростью должна теоретически передавать гигабайт данных всего за восемь секунд. А 10-Гбайт архив должен передаваться всего за минуту и 20 секунд. Скорость невероятная: просто вспомните, сколько времени уходило на передачу гигабайта данных до того момента, как USB-брелоки стали такими быстрыми, как сегодня.

Ожидания были серьёзными, поэтому мы решили передать файл по гигабитной сети и насладиться скоростью близкой к 125 Мбайт/с. У нас нет какого-либо специализированного чудесного оборудования: простая домашняя сеть с некоторыми старыми, но приличными технологиями.

Копирование 4,3-Гбайт файла с одного домашнего компьютера на другой выполнялось со средней скоростью 35,8 Мбайт/с (мы проводили тест пять раз). Это всего лишь 30% от теоретического потолка гигабитной сети 125 Мбайт/с.

В чём же причины проблемы?

Подобрать компоненты для установки гигабитной сети довольно просто, но вот заставить сеть работать на максимальной скорости намного сложнее. Факторы, которые могут привести к замедлению сети, довольно многочисленны, но как мы обнаружили, всё упирается в то, насколько быстро жёсткие диски способны передавать данные на сетевой контроллер.

Первое ограничение, которое нужно учитывать - интерфейс гигабитного сетевого контроллера с системой. Если ваш контроллер подключён через старую шину PCI, то количество данных, которое она теоретически может передать, составляет 133 Мбайт/с. Для пропускной способности 125 Мбайт/с у Gigabit Ethernet этого кажется достаточным, но помните, что пропускная способность шины PCI распределяется по всей системе. Каждая дополнительная карта PCI и многие системные компоненты будут использовать ту же самую пропускную способность, что снижает ресурсы, доступные сетевой карте. У контроллеров с новым интерфейсом PCI Express (PCIe) таких проблем нет, поскольку каждая линия PCIe обеспечивает, как минимум 250 Мбайт/с пропускной способности, причём эксклюзивно для устройства.

Следующий важный фактор, который влияет на скорость сети - кабели. Многие специалисты указывают на то, что в случае прокладки сетевых кабелей рядом с кабелями питания, являющимися источниками помех, низкие скорости гарантированы. Большая длина кабелей тоже проблемная, поскольку медные кабели Cat 5e сертифицированы под максимальную длину 100 метров.

Некоторые специалисты рекомендуют прокладывать кабели нового стандарта Cat 6 вместо Cat 5e. Часто такие рекомендации оправдать сложно, но мы попытаемся протестировать влияние категории кабеля на маленькую гигабитную домашнюю сеть.

Не будем забывать и про операционную систему. Конечно, в гигабитном окружении эта система используется довольно редко, но следует упомянуть, что Windows 98 SE (и старые операционные системы) не смогут использовать преимущества гигабитного Ethernet, поскольку стек TCP/IP этой операционной системы едва умеет нагружать 100-Мбит/с соединение в полной мере. Windows 2000 и более свежие версии Windows уже подойдут, хотя в старых операционных системах придётся выполнить некоторые настройки, чтобы они использовали сеть по максимуму. Мы будем использовать 32-битную ОС Windows Vista для наших тестов, и хотя у Vista в каких-то задачах репутация не самая лучшая, эта система поддерживает гигабитную сеть с самого начала.

Теперь перейдём к жёстким дискам. Даже старого интерфейса IDE со спецификацией ATA/133 должно быть достаточно для поддержки теоретической скорости передачи файлов 133 Мбайт/с, а более новая спецификация SATA соответствует всем требованиям, поскольку она обеспечивает, как минимум, пропускную способность 1,5 Гбит/с (150 Мбайт/с). Однако если кабели и контроллеры могут справляться с передачей данных на такой скорости, сами жёсткие диски - нет.

Возьмём для примера типичный современный жёсткий диск на 500 Гбайт, который должен обеспечивать постоянную пропускную способность около 65 Мбайт/с. В начале пластин (внешние дорожки) скорость может быть выше, однако по мере перехода на внутренние дорожки пропускная способность падает. Данные на внутренних дорожках считываются медленнее, на скорости около 45 Мбайт/с.

Нам казалось, что мы рассмотрели все возможные "узкие места". Что оставалось делать? Нужно было провести несколько тестов и посмотреть, сможем ли мы добраться по производительности сети до теоретического предела 125 Мбайт/с.

Тестовая конфигурация

Тестовые системы Серверная система Клиентская система
CPU Intel Core 2 Duo E6750 (Conroe), 2,66 ГГц, FSB-1333, кэш 4 Мбайт Intel Core 2 Quad Q6600 (Kentsfield), 2,7 ГГц, FSB-1200, кэш 8 Мбайт
Материнская плата ASUS P5K, Intel P35, BIOS 0902 MSI P7N SLI Platinum, Nvidia nForce 750i, BIOS A2
Сеть Встроенный контроллер Abit Gigabit LAN Встроенный контроллер nForce 750i Gigabit Ethernet
Память Wintec Ampo PC2-6400, 2x 2048 Мбайт, DDR2-667, CL 5-5-5-15 на 1,8 В A-Data EXTREME DDR2 800+, 2x 2048 Мбайт, DDR2-800, CL 5-5-5-18 на 1,8 В
Видеокарты ASUS GeForce GTS 250 Dark Knight, 1 Гбайт GDDR3-2200, 738 МГц GPU, 1836 МГц блок шейдеров MSI GTX260 Lightning, 1792 Мбайт GDDR3-1998, 590 МГц GPU, 1296 МГц блок шейдеров
Жёсткий диск 1 Seagate Barracuda ST3320620AS, 320 Гбайт, 7200 об/мин, кэш 16 Мбайт, SATA 300
Жёсткий диск 2 2x Hitachi Deskstar 0A-38016 в RAID 1, 7200 об/мин, кэш 16 Мбайт, SATA 300 Western Digital Caviar WD50 00AAJS-00YFA, 500 Гбайт, 7200 об/мин, кэш 8 Мбайт, SATA 300
Блок питания Aerocool Zerodba 620w, 620 Вт, ATX12V 2.02 Ultra HE1000X, ATX 2.2, 1000 Вт
Сетевой коммутатор D-Link DGS-1008D, 8-Port 10/100/1000 Unmanaged Gigabit Desktop Switch
ПО и драйверы
ОС Microsoft Windows Vista Ultimate 32-bit 6.0.6001, SP1
Версия DirectX DirectX 10
Графический драйвер Nvidia GeForce 185.85

Тесты и настройки

Тесты и нстройки
Nodesoft Diskbench Version: 2.5.0.5, file Copy, Creation, Read, and Batch Benchmark
SiSoftware Sandra 2009 SP3 Version 2009.4.15.92, CPU Test = CPU Arithmetic / Multimedia, Memory Test = Bandwidth Benchmark

Перед тем, как мы перейдём к любым тестам, мы решили протестировать жёсткие диски без использования сети, чтобы посмотреть, какую пропускную способность мы можем ожидать в идеальном сценарии.

В нашей домашней гигабитной сети работают два ПК. Первый, который мы будем называть сервером, оснащён двумя дисковыми подсистемами. Основной жёсткий диск - 320-Гбайт Seagate Barracuda ST3320620AS возрастом пару лет. Сервер работает в качестве сетевого хранилища NAS с RAID-массивом, состоящим из двух 1-Тбайт жёстких дисков Hitachi Deskstar 0A-38016, которые зеркалированы для избыточности.

Второй ПК в сети мы назвали клиентом, у него два жёстких диска: оба 500-Гбайт Western Digital Caviar 00AAJS-00YFA возрастом около полугода.

Сначала мы протестировали скорость системных жёстких дисков сервера и клиента, чтобы посмотреть, какую производительность мы можем от них ожидать. Мы использовали тест жёсткого диска в пакете SiSoftware Sandra 2009.

Наши мечты о достижении гигабитной скорости передачи файлов сразу же рассеялись. Оба из одиночных жёстких дисков достигли максимальной скорости чтения около 75 Мбайт/с в идеальных условиях. Поскольку данный тест проводится в реальных условиях, а накопители заполнены на 60%, то мы можем ожидать скорости чтения ближе к индексу 65 Мбайт/с, который мы получили у обоих жёстких дисков.

Но давайте посмотрим на производительность RAID 1 - самое хорошее у данного массива в том, что аппаратный RAID-контроллер может увеличивать производительность чтения, получая данные с обоих жёстких дисков одновременно, аналогично массивам RAID 0; но данный эффект получается (насколько мы знаем) только с аппаратными RAID-контроллерами, но не с программными решениями RAID. В наших тестах массив RAID обеспечил намного более высокую производительность чтения, чем один жёсткий диск, поэтому велики шансы того, что мы получим высокую скорость передачи файлов по сети с массива RAID 1. Массив RAID обеспечил впечатляющую пиковую пропускную способность 108 Мбайт/с, но в реальности производительность должна быть близка к индексу 88 Мбайт/с, поскольку массив заполнен на 55%.

Поэтому мы должны получить около 88 Мбайт/с по гигабитной сети, не так ли? Это не так близко к потолку гигабитной сети 125 Мбайт/с, но намного быстрое 100-Мбит/с сетей, у которых потолок составляет 12,5 Мбайт/с, так что получить 88 Мбайт/с на практике было бы совсем неплохо.

Но не всё так просто. То, что скорость чтения с жёстких дисков довольно высока, вовсе не означает, что они будут быстро записывать информацию в реальных условиях. Давайте проведём несколько тестов записи на диски до использования сети. Мы начнём с нашего сервера и скопируем 4,3-Гбайт образ со скоростного массива RAID на 320-Гбайт системный жёсткий диск и обратно. Затем мы скопируем файл с клиентского диска D: на его диск C:.

Как видим, копирование с быстрого массива RAID на диск C: дало среднюю скорость всего 41 Мбайт/с. А копирование с диска C: на массив RAID 1 привело к снижению до всего 25 Мбайт/с. Что происходит?

Именно так и случается в реальности: жёсткий диск C: выпущен чуть больше года назад, но он заполнен на 60%, вероятно, немного фрагментирован, так что по записи он рекордов не бьёт. Есть и другие факторы, а именно, насколько быстро работает система и память в целом. Массив RAID 1 составлен из относительного нового "железа", но из-за избыточности информацию нужно записывать на два жёстких диска одновременно, что снижает производительность. Хотя массив RAID 1 может дать высокую производительность чтения, скоростью записи придётся пожертвовать. Конечно, мы могли использовать массив RAID 0 с чередованием, который даёт высокую скорость записи и чтения, но если один жёсткий диск "умрёт", то вся информация будет испорчена. В целом, RAID 1 является более правильным вариантом, если для вас ценны данные, хранящиеся на NAS.

Впрочем, не всё потеряно. Новый 500-Гбайт накопитель Digital Caviar способен записывать наш файл со скоростью 70,3 Мбайт/с (средний результат по пяти тестовым прогонам), а также даёт максимальную скорость 73,2 Мбайт/с.

С учётом всего сказанного мы ожидали получить в реальных условиях максимальную скорость передачи по гигабитной сети 73 Мбайт/с с массива NAS RAID 1 на диск C: клиента. Мы также протестируем передачу файлов с клиентского диска C: на серверный диск C: чтобы узнать, можем ли мы реалистично ожидать 40 Мбайт/с в этом направлении.

Начнём с первого теста, в рамках которого мы отсылали файл с клиентского диска C: на диск C: сервера.

Как видим, результаты соответствуют нашим ожиданиям. Гигабитная сеть, способная в теории дать 125 Мбайт/с, отсылает данные с клиентского диска C: с максимально возможной скоростью, вероятно, в районе 65 Мбайт/с. Но, как мы показали выше, серверный диск C: может записывать только со скоростью около 40 Мбайт/с.

Теперь давайте скопируем файл со скоростного RAID-массива сервера на диск C: клиентского компьютера.

Всё оказалось так, как мы и предполагали. Из наших тестов мы знаем, что диск C: клиентского компьютера способен записывать данные со скоростью около 70 Мбайт/с, и производительность гигабитной сети оказалась очень близка к данной скорости.

К сожалению, полученные нами результаты и близко не подходят к теоретической максимальной пропускной способности 125 Мбайт/с. Можем ли мы протестировать предельную скорость работы сети? Конечно, но не в реалистичном сценарии. Мы попытаемся передать информацию по сети из памяти в память, чтобы обойти любые ограничения жёстких дисков по пропускной способности.

Для этого мы создадим 1-Гбайт RAM-диск на серверном и клиентском ПК, после чего передадим 1-Гбайт файл между этими дисками по сети. Поскольку даже медленная память DDR2 способна передавать данные со скоростью более 3000 Мбайт/с, то ограничивающим фактором окажется сетевая пропускная способность.

Мы получили максимальную скорость работы нашей гигабитной сети 111,4 Мбайт/с, что очень близко к теоретическому пределу 125 Мбайт/с. Прекрасный результат, жаловаться на него не приходится, поскольку реальная пропускная способность всё равно не будет достигать теоретического максимума из-за передачи дополнительной информации, ошибок, повторных передач и т.д.

Вывод будет следующим: сегодня производительность передачи информации по гигабитной сети упирается в жёсткие диски, то есть скорость передачи будет ограничена самым медленным винчестером, участвующем в процессе. Ответив на самый важный вопрос, мы можем переходить к тестам скорости в зависимости от конфигурации кабелей, чтобы наша статья была полной. Сможет ли оптимизация прокладки кабелей дать скорость сети, ещё более близкую к теоретическому пределу?

Поскольку производительность в наших тестах была близка к предполагаемой, мы вряд ли увидим какие-либо улучшения при изменении конфигурации кабелей. Но мы всё равно хотели провести тесты, чтобы приблизиться к теоретическому ограничению по скорости.

Мы провели четыре теста.

Тест 1: по умолчанию.

В данном тесте мы использовали два кабеля длиной около 8 метров, каждый из которых был подключён к компьютеру на одном конце и к гигабитному коммутатору на другом. Мы оставили кабели там, где их прокладывали, то есть по соседству с кабелями питания и розетками.

На этот раз мы использовали те же 8-м кабели, что и в первом тесте, но перенесли сетевой кабель как можно дальше от кабелей питания и удлинителей.

В данном тесте мы сняли один из 8-м кабелей и заменили его метровым кабелем Cat 5e.

В последнем тесте мы заменили 8-м кабели Cat 5e на 8-м кабели Cat 6.

В общем, наше тестирование разных конфигураций кабелей не показала серьёзной разницы, но выводы сделать можно.

Тест 2: снижаем помехи со стороны кабелей питания.

В небольших сетях, таких как наша домашняя сеть, тесты показывают, что вам можно не беспокоиться о прокладке кабелей LAN рядом с кабелями электропроводки, розетками и удлинителями. Конечно, наводки при этом будут выше, но серьёзного эффекта на скорость сети это не даст. Впрочем, с учётом всего сказанного, лучше избегать прокладки рядом с кабелями питания, да и следует помнить, что в вашей сети ситуация может оказаться иной.

Тест 3: уменьшаем длину кабелей.

Это не совсем корректный тест, но мы пытались обнаружить разницу. Следует помнить, что замена восьмиметрового кабеля на метровый может привести к влиянию на результат просто разных кабелей, чем разницы в расстоянии. В любом случае, в большинстве тестов мы не видим значимой разницы за исключением аномального подъёма пропускной способности во время копирования с клиентского диска C: на серверный C:.

Тест 4: заменяем кабели Cat 5e на Cat 6.

Опять же, мы не обнаружили существенной разницы. Поскольку длина кабелей составляет около 8 метров, большие по длине кабели могут дать большую разницу. Но если у вас длина не максимальная, то кабели Cat 5e будут вполне нормально работать в домашней гигабитной сети с расстоянием между двумя компьютерами 16 метров.

Интересно заметить, что манипуляции с кабелями не дали никакого эффекта на передачу данных между RAM-дисками компьютеров. Вполне очевидно, что какой-то другой компонент в сети ограничивал производительность магической цифрой 111 Мбайт/с. Впрочем, подобный результат всё равно приемлем.

Дают ли гигабитные сети гигабитную скорость? Как оказывается, почти дают.

Однако в реальных условиях скорость сети будет серьёзно ограничиваться жёсткими дисками. В синтетическом сценарии память-память наша гигабитная сеть дала производительность, очень близкую к теоретическому пределу 125 Мбайт/с. Обычные же скорости в сети с учётом производительности жёстких дисков будут ограничиваться уровнем от 20 до 85 Мбайт/с, в зависимости от используемых винчестеров.

Мы также протестировали влияние кабелей питания, длины кабеля и перехода с Cat 5e на Cat 6. В нашей небольшой домашней сети ни один из упомянутых факторов не влиял существенно на производительность, хотя мы хотим отметить, что в более крупной и более сложной сети с большими длинами эти факторы могут влиять намного сильнее.

В общем, если вы передаёте в домашней сети большое количество файлов, то мы рекомендуем устанавливать гигабитную сеть. Переход с сети на 100 Мбит/с даст приятный прирост производительности, по крайней мере, вы получите двукратное увеличение скорости передачи файлов.

Gigabit Ethernet в домашней сети может дать больший прирост производительности, если вы будете считывать файлы с быстрого хранилища NAS, где используется аппаратный массив RAID. В нашей тестовой сети мы передавали 4,3-Гбайт файл всего за одну минуту. По соединению на 100 Мбит/с тот же самый файл копировался около шести минут.

Гигабитные сети становятся всё более доступными. Теперь осталось только дождаться, когда скорости жёстких дисков поднимутся до такого же уровня. А пока что мы рекомендуем создавать массивы, способные обойти ограничения современных технологий HDD. Тогда вы сможете выжать больше производительности из гигабитной сети.

Многие россияне уже успели познать прелести гигабитного Ethernet"а. Домашние пользователи в РФ все чаще отдают предпочтение суперскоростному Интернет-доступу.

– У вас еще нет Gigabit Ethernet? Тогда мы идем к вам! Мы расскажем, как правильно построить домашнюю сеть на гигабитных скоростях, какой маршрутизатор выбрать, какой максимальной скорости можно достигнуть при подходящем оборудовании, а также насколько дорого это вам обойдется.

Всего несколько лет назад технология Gigabit Ethernet использовалась только телеком-операторами и крупными компаниями: в корпоративных сетях, локальных сетях, для транспортировки трафика на большие расстояния и т.п. Домашние абоненты и не думали о том, чтобы заполучить такие скорости. Но в 2012-2013 гг., благодаря усовершенствованию «софта» и «железа», а также широчайшему распространению Интернет-технологий, гигабитные скорости стали доступнее и реальнее для частных пользователей. Сегодня практически каждый житель мегаполиса имеет возможность построить у себя дома сеть с поддержкой Gigabit Ethernet.

Многие спросят: «А зачем вообще дома иметь Интернет со скоростями порядка 1 Гбит/с? Неужели мегабитного Интернета недостаточно для серфинга по сайтам, скачивания фильмов и зависания в соцсетях?»

Ответим развернуто.

Как домашний пользователь может использовать Gigabit Ethernet

Российские Интернет-пользователи, как впрочем и потребители домашнего Интернета по всему миру, чрезвычайно активно используют трафик. Объемы трафика, потребляемого в мире, с каждым месяцем (уже даже не годом) растут. Еще несколько лет назад мы были рады 1 Мбит/с, а еще раньше – готовы были скачивать фильм всю ночь, чтобы потом посмотреть его. Сегодня уже мало кто вообще скачивает видео, большинство смотрит прямо в онлайне. Кроме того, тысячи пользователей хотят HD-качество, и готовы платить за него. А чтобы смотреть и качать видео в высоком качестве нужен скоростной безлимитный Интернет.

Также в последнее время популярность приобретает торрент-телевидение, позволяющее смотреть телевизор через Интернет, совершенно бесплатно. Некоторые пользователи уже стали отказываться от кабельного и спутникового TV, другие пользуются торрент-телевидением как новым интересным сервисом и надеются на его скорую популяризацию. Но в любом случае для торрент-TV нужен быстрый Интернет, да еще и безлимитный, иначе эта затея обойдется дороже, чем обычное кабельное.

Очень важным сегментом потребителей широкополосного скоростного Интернета являются геймеры, которые играют онлайн. Сегодня существует множество онлайновых игр, ради которых молодежь (да и не только) апгрейдит свои ПК, платит за безлимитный Интернет с высокими скоростями соединения. Более того, на конец 2013 г. запланирован выход новой культовой игры Survarium от создателей S.T.A.L.K.E.R. Это будет онлайн игра с бесплатными аккаунтами. Учитывая то, сколько россиян играло в легендарного S.T.A.L.K.E.R, Интернет-провайдерам стоит приготовиться к новому наплыву абонентов, готовых платить за более быстрый и дорогой доступ в Сеть. А пользователям можно начинать готовиться уже сейчас – и гигабитный Интернет может стать первым шагом в этой подготовке.

Одним словом, найти применение Gigabit Ethernet в домашней сети очень просто, если вы человек ИТ-продвинутый и используете современные технологии по полной.

Реальная скорость Gigabit Ethernet – где подвох?

Фраза «гигабитный Интернет» звучит громко, но действительно ли вы получите минимум 1 Гбит/с? На самом деле такая скорость достигается лишь в идеальных условиях, получить ее дома нереально, даже если вы установите оборудование, поддерживающее Gigabit Ethernet, настроите все, как надо, закажете у провайдера гигабитный пакет. Конечно, вы получите скорость в 1 тысячу раз выше, чем при 1 Мбит/с, ведь для мегабитного Интернета действуют все те же ограничения. Но давайте посчитаем, какой будет ваша скорость доступа в Сеть.

Считать будем, пользуясь обычной арифметикой, по «стандартному» подходу. Кроме того, будем для простоты округлять: 1 килобит = 1000 бит, а не 1024 бит. В этом случае 1 Гигабит равен 1000 мегабитов. Но на жестком диске информация хранится отнюдь не в битах, а в байтах – более крупных единицах. Как всем известно, 1 байт = 8 бит. Для удобства объем информации и скорость ее передачи принято считать в разных единицах, и это часто сбивает с толку пользователя, заставляя его ожидать большего, чем есть на самом деле.

Таким образом, скорость передачи реальных файлов будет в 8 раз меньше, чем говорит провайдер, поскольку провайдеры и программы для тестирования скорости считают биты. Наш 1 Гбит/с (1 000 000 000 бит/с) превращается в 125 000 000 байтов (разделили на 8). Получается, что 1 Гбит/с = 125 Мбайт/с.

Но проблема в том, что домашний пользователь в силу разных обстоятельств, не всегда зависящих от него, получает реально только около 30% от идеальных 125 Мбайт/с. То есть нам достается уже порядка 37 Мбайт/с. Это все, что остается от 1 Гбит/с. Но если смотреть на эту цифру в сравнении с 1 Мбит/с, то мы все равно получим в 1 тыс. раз более быстрый Интернет.

Оборудование домашней сети под Gigabit Ethernet

Создать дома условия для сети Gigabit Ethernet сегодня вполне возможно. Причем если у вас современный ПК, то понадобится не очень большое переоборудование, и стоить оно будет не так много, как может показаться на первый взгляд. Самое главное при этом – удостовериться, что все ваши основные устройства поддерживают Gigabit Ethernet. Ведь если хотя бы одно из них не будет рассчитано на такие скорости, то в итоге вы получите максимум 100 Мбит/с.

Если вы хотите добиться гигабитных скоростей, то вам понадобится следующее оборудование с поддержкой 1 Гбит/с:

  • маршрутизатор, поддерживающий Gigabit Ethernet;
  • сетевая карта (Ethernet-адаптер, сетевой адаптер);
  • сетевой контроллер;
  • концентратор/коммутатор;
  • жесткий диск;
  • кабели должны быть рассчитаны на 1 Гбит/с.

Каждое из перечисленных устройств является важным звеном сети, от каждого зависит итоговая скорость передачи данных. Так что давайте более внимательно рассмотрим каждое из них.

Wi-Fi роутер. Вам нужен гигабитный роутер, т.е. с поддержкой Gigabit Ethernet. Эти маршрутизаторы несколько дороже мегабитных, ведь они рассчитаны на более высокие скорости. В принципе, на рынке достаточно предложений под брендами Asus, TP-LINK, D-Link и проч. Но основывайте свой выбор не только на перечне функций, характеристиках и дизайне. Обязательно просмотрите форумы (причем не меньше 5-ти) с отзывами реальных потребителей, чтобы удостовериться в том, что маршрутизатор будет работать долго и надежно.

Сетевая карта. Это устройство может быть интегрированным в материнскую плату или отдельным. Сетевой адаптер для гигабитной сети должен обязательно поддерживать Gigabit Ethernet. Если вашему ПК более 2-3 лет, то скорее всего сетевая карта устарела и не поддерживает такие высокие скорости. Если же вы недавно приобрели компьютер, то вполне возможно, что апгрейдить сетевой адаптер не придется. Но в любом случае проверьте характеристики конкретно вашей сетевой карты на предмет совместимости с Gigabit Ethernet сетью.

Сетевой контроллер. Если вы строите домашнюю сеть, то важно, чтобы каждый компьютер в этой сети имел гигабитный контроллер. Иначе достаточные скорости получат лишь те ПК, которые такой имеют. Как и сетевая карта, сетевой контроллер может быть отдельным или интегрированным в материнскую плату. Обычно в современные ПК по умолчанию устанавливают контроллеры, поддерживающие 1 Гбит/с. Так что возможно, что вам не придется ничего модифицировать для Gigabit Ethernet.

Концентратор/коммутатор. Это один из самых дорогих компонентов домашней сети. Зачастую он уже есть в роутере. Но проверьте, поддерживает ли он гигабитные скорости. Важно! Коммутатор эффективнее концентратора, поскольку он направляет данные только на один конкретный порт, а концентратор – на все сразу. Используя коммутатор можно существенно экономить ресурс, не распыляя его на лишние порты.

Жесткий диск. Кому-то это может показаться странным, но жесткий диск серьезно влияет на скорость доступа в Интернет. Дело в том, что именно жесткий диск направляет данные на сетевой контроллер, и от их качественного соединения зависит то, насколько быстро вы сможете передавать и принимать данные. Желательно, чтобы контроллер имел интерфейс PCI Express (PCIe), а не PCI. А жесткий диск должен иметь разъем SATA, а не IDE, поскольку последний поддерживает слишком малые скорости.

Сетевой кабель. Естественно, кабель является важной частью домашней гигабитной сети. Можно выбрать кабели типа «витая пара» категории Cat 5 и Cat 5e (используются для прокладки телефонных линий и локальных сетей – их достаточно для Gigabit Ethernet) или же немного переплатить и взять кабель Cat 6 (специально разработанный под Gigabit Ethernet и Fast Ethernet). Длина витой пары должна составлять не больше 100 м, иначе сигнал начинает затухать и нужной скорости Интернет-соединения не добиться. Кроме того, при размещении кабелей в квартире обратите внимание на то, что их нежелательно прокладывать рядом с проводами электропитания (подробнее о причинах читайте ).

И последний важный фактор для организации домашней сети Gigabit Ethernet – это программное обеспечение. Операционная система на ПК должна быть посвежее. Если это Windows, то не ранее Windows 2000 (да и то придется покопаться в настройках). Версии XP, Vista, Windows 7 поддерживают гигабитный Интернет по умолчанию, поэтому проблем не должно возникнуть. С другими ОС может возникнуть необходимость дополнительного настраивания.

Топ-5 лучших домашних Wi-Fi маршрутизаторов,
поддерживающих Gigabit Ethernet, 2013

1. ASUS RT-N66U – отличная модель, мощная и надежная. Работает одновременно в двух частотных диапазонах – 2,4 и 5 ГГц. Радует высокая скорость передачи данных – заявлено 900 Мбит/с. Для построения домашней Gigabit Ethernet сети отлично подходит. Но нужно перепрошивать, чтобы повысить производительность и избавиться от ряда проблем, которые возникают на родной прошивке. Впрочем, большинство роутеров требуют перепрошивки сразу или вскоре после покупки. Стоимость составляет порядка 4,5-5 тыс. руб.

2. D-Link DIR-825 – неплохой выбор. Это 2-диапазонный роутер, достаточно «нафаршированный». Рабочие частоты: 2,4 и 5 ГГц; доступно одновременное использование обеих. Данный маршрутизатор имеет оптимальное на рынке соотношение «цена-качество». Среди преимуществ – широкий канал раздачи Wi-Fi (может потянуть до 50 абонентов). С точки зрения пользователей, наиболее заметным минусом является яркая светодиодная индикация устройства, но это, скорее, дело вкуса, а не качества девайса. Что касается прошивки, то можно оставить и родную, но для повышения производительности рекомендуется перепрошить. Цена маршрутизатора: около 3 тыс. руб.

3. TP-LINK TL-WDR4300 – очень скоростной маршрутизатор, отлично подходящий для домашних сетей. Производитель заявляет максимальную скорость передачи данных на уровне 750 Мбит/с. Одно из важных преимуществ данной модели над многими другими – возможность одновременно использовать две полосы частот: 2,4 и 5 ГГц. Благодаря этому пользователи могут одновременно соединяться с Интернетом и с телефонов, смартфонов, и с ноутбука, ПК или планшета. Еще один плюс данной модели в том, что у нее в комплект входят достаточно мощные антенны, позволяющие раздавать Интернет по Wi-Fi более чем на 200 м. Но для того чтобы все это функционировало нормально, прошивку с завода лучше поменять. Благодаря ряду манипуляций с ПО устройство будет работать намного лучше. Цена модели: порядка 3 тыс. руб.

4. Zyxel Keenetic Giga является неплохим маршрутизатором с несколькими полезными функциями. Основной его минус состоит в том, что работает роутер только в одном частотном диапазоне – 2,4ГГц. Но при этом скорость достаточная для того, чтобы смотреть IP-телевидение, пользоваться торрент-сетями (имеется встроенный торрент-клиент) и другими «прожорливыми» сервисами. Zyxel Keenetic Giga оснащен мощными антеннами, что позволяет создавать сети Wi-Fi (кстати, устройство поддерживает все стандарты Wi-Fi) с большим радиусом действия. Роутер достаточно прост в настройке, но прошивку, как и для большинства маршрутизаторов, придется поменять. Еще один плюс в том, что устройство сравнительно недорогое – от 3 до 4 тыс. руб.

5. TP-LINK TL-WR1043ND – достаточно мощный и дешевый гигабитный роутер. Правда, имеет несколько недостатков. Во-первых, работает только в диапазоне 2,4ГГц, что не очень удобно. Во-вторых, больше подходит опытным пользователям, поскольку родная прошивка, как во многих случаях, не очень хороша, а перепрошивать эту модель может быть непросто. Зато все это с лихвой компенсируется надежностью и мощностью данного маршрутизатора. Максимальная скорость передачи данных составляет 300 Мбит/с. Устройство отрабатывает свои деньги, поскольку цена модели равна всего от 2 тыс. руб.


Gigabit Ethernet

Сейчас идет много разговоров о том, что пора бы уж массово переходить на гигабитные скорости при подключении конечных пользователей локальных сетей, а также опять поднимается вопрос об оправданности и прогрессивности решений «волокно до рабочего места», «волокно до дома» и т.п. В связи с этим данная статья, описывающая стандарты не только на медные, но и, главным образом, на оптоволоконные интерфейсы GigE, будет вполне уместна и своевременна.

архитектура стандарта Gigabit Ethernet

На рис.1 показана структура уровней Gigabit Ethernet. Как и в стандарте Fast Ethernet, в Gigabit Ethernet не существует универсальной схемы кодирования сигнала, которая была бы идеальной для всех физических интерфейсов - так, с одной стороны, для стандартов 1000Base-LX/SX/CX используется кодирование 8B/10B, а с другой стороны, для стандарта 1000Base-T используется специальный расширенный линейный код TX/T2. Функцию кодирования выполняет подуровень кодирования PCS, размещенный ниже среданезависимого интерфейса GMII.

Рис. 1. Структура уровней стандарта Gigabit Ethernet, GII интерфейс и трансивер Gigabit Ethernet

GMII интерфейс . Среданезависимый интерфейс GMII (Gigabit Media Independent Interface) обеспечивает взаимодействие между уровнем MAC и физическим уровнем. GMII интерфейс является расширением интерфейса MII и может поддерживать скорости 10, 100 и 1000 Мбит/с. Он имеет отдельные 8 битные приемник и передатчик, и может поддерживать как полудуплексный, так и дуплексный режимы. Кроме этого, GMII интерфейс несет один сигнал, обеспечивающий синхронизацию (clock signal), и два сигнала состояния линии - первый (в состоянии ON) указывает наличие несущей, а второй (в состоянии ON) говорит об отсутствии коллизий - и еще несколько других сигнальных каналов и питание. Трансиверный модуль, охватывающий физический уровень и обеспечивающий один из физических средазависимых интерфейсов, может подключать например к коммутатору Gigabit Ethernet посредством GMII-интерфейса.

Подуровень физического кодирования PCS. При подключении интерфейсов группы 1000Base-X, подуровень PCS использует блочное избыточное кодирование 8B10B, заимствованное из стандарта ANSI X3T11 Fibre Channel. Аналогичного рассмотренному стандарту FDDI, только на основе более сложной кодовой таблицы каждые 8 входных битов, предназначенных для передачи на удаленный узел, преобразовываются в 10 битные символы (code groups). Кроме этого в выходном последовательном потоке присутствуют специальные контрольные 10 битные символы. Примером контрольных символов могут служить символы, используемые для расширения носителя (дополняют кадр Gigabit Ethernet до его минимально размера 512 байт). При подключении интерфейса 1000Base- T, подуровень PCS осуществляет специальное помехоустойчивое кодирование, для обеспечения передачи по витой паре UTP Cat.5 на расстояние до 100 метров - линейный код TX/T2, разработанный компанией Level One Communications.

Два сигнала состояния линии - сигнал наличие несущей и сигнал отсутствие коллизий - генерируются этим подуровнем.

Подуровни PMA и PMD. Физический уровень Gigabit Ethernet использует несколько интерфейсов, включая традиционную витую пару категории 5, а также многомодовое и одномодовое волокно. Подуровень PMA преобразует параллельный поток символов от PCS в последовательный поток, а также выполняет обратное преобразование (распараллеливание) входящего последовательного потока от PMD. Подуровень PMD определяет оптические/электрические характеристики физических сигналов для разных сред. Всего определяются 4 различный типа физических интерфейса среды, которые отражены в спецификация стандарта 802.3z (1000Base-X) и 802.3ab (1000Base-T), (рис.2).

Рис. 2. Физические интерфейсы стандарта Gigabit Ethernet

интерфейс 1000Base-X

Интерфейс 1000Base-X основывается на стандарте физического уровня Fibre Channel. Fibre Channel - это технология взаимодействия рабочих станций, суперкомпьютеров, устройств хранения и периферийных узлов. Fibre Channel имеет 4-х уровневую архитектуру. Два нижних уровня FC-0 (интерфейсы и среда) и FC-1 (кодирование/декодирование) перенесены в Gigabit Ethernet. Поскольку Fibre Channel является одобренной технологией, то такое перенесение сильно сократило время на разработку оригинального стандарта Gigabit Ethernet.

Блочный код 8B/10B аналогичен коду 4B/5B, принятому в стандарте FDDI. Однако код 4B/5B был отвергнут в Fibre Channel, потому что этот код не обеспечивает баланса по постоянному току. Отсутствие баланса потенциально может привести к зависящему от передаваемых данных нагреванию лазерных диодов, поскольку передатчик может передавать больше битов "1" (излучение есть), чем "0" (излучения нет), что может быть причиной дополнительных ошибок при высоких скоростях передачи.

1000Base-X подразделяется на три физических интерфейса, основные характеристики которых приведены ниже:

Интерфейс 1000Base-SX определяет лазеры с допустимой длиной излучения в пределах диапазона 770-860 нм, мощность излучения передатчика в пределах от -10 до 0 дБм, при отношении ON/OFF (сигнал / нет сигнала) не меньше 9 дБ. Чувствительность приемника -17 дБм, насыщение приемника 0 дБм;

Интерфейс 1000Base-LX определяет лазеры с допустимой длиной излучения в пределах диапазона 1270-1355 нм, мощность излучения передатчика в пределах от -13,5 до -3 дБм, при отношении ON/OFF (есть сигнал / нет сигнала) не меньше 9 дБ. Чувствительность приемника -19 дБм, насыщение приемника -3 дБм;

1000Base-CX экранированная витая пара (STP "twinax") на короткие расстояния.

Для справки в табл.1 приведены основные характеристики оптических приемо-передающих модулей, выпускаемых фирмой Hewlett Packard для стандартных интерфейсов 1000Base-SX (модель HFBR-5305, =850 нм) и 1000Base-LX (модель HFCT-5305, =1300 нм).

Таблица 1. Технические характеристики оптических приемо-передатчиков Gigabit Ethernet

Поддерживаемые расстояния для стандартов 1000Base-X приведены в табл.2.

Таблица 2. Технические характеристики оптических приемо-передатчиков Gigabit Ethernet

При кодировании 8B/10B битовая скорость в оптической линии составляет 1250 бит/c. Это означает, что полоса пропускания участка кабеля допустимой длины должна превышать 625 МГц. Из табл. 2 видно, что этот критерий для строчек 2-6 выполняется. Из-за большой скорости передачи Gigabit Ethernet, следует быть внимательным при построении протяженных сегментов. Безусловно предпочтение отдается одномодовому волокну. При этом характеристики оптических приемопередатчиков могут быть значительно выше. Например компания NBase выпускает коммутаторы с портами Gigabit Ethernet, обеспечивающими расстояния до 40 км по одномодовому волокну без ретрансляций (используются узкоспектральные DFB лазеры, работающие на длине волны 1550 нм).

особенности использования многомодового волокна

В мире существует огромное количество корпоративных сетей на основе многомодового волоконно-оптического кабеля, с волокнами 62,5/125 и 50/125. По этому естественно, что еще на этапе формирования стандарта Gigabit Ethernet возникла задача адаптации этой технологии для использования в существующих многомодовых кабельных системах. В ходе исследований по разработке спецификаций 1000Base-SX и 1000Base-LX была выявлена одна очень интересная аномалия, связанная с использованием лазерных передатчиков совместно с многомодовым волокном.

Многомодовое волокно конструировалось для совместного использования со светоизлучающими диодами (спектр излучения 30-50 нс). Некогерентное излучение от таких светодиодов попадает в волокно по всей площади светонесущей сердцевины. В результате в волокне возбуждается огромное число модовых групп. Распространяющийся сигнал хорошо поддается описанию на языке межмодовой дисперсии. Эффективность использования таких светодиодов в качестве передатчиков в стандарте Gigabit Ethernet низкая, в силу очень высокой частоты модуляции - скорость битового потока в оптической линии равна 1250 Мбод, а длительность одно импульса - 0,8 нс. Максимальная скорость, когда еще используются светодиоды для передачи сигнала по многомодовому волокну, составляет 622,08 Мбит/c (STM-4, c учетом избыточности кода 8B/10B битовая скорость в оптической линии 777,6 Мбод). По этому Gigabit Ethernet стал первым стандартом, регламентирующим использование лазерных оптических передатчиков совместно с многомодовым волокном. Площадь ввода излучения в волокно от лазера значительно меньше, чем размер сердцевины многомодового волокна. Этот факт сам по себе еще не приводит к проблеме. В то же время, в технологическом процессе производства стандартных коммерческих многомодовых волокон допускается наличие некоторых некритичных при традиционном использовании волокна дефектов (отклонений в пределах допустимого), в наибольшей степени сосредоточенных вблизи оси сердцевины волокна. Хотя такое многомодовое волокно полностью удовлетворяет требованиям стандарта, когерентный свет от лазера, введенный по центру такого волокна, проходя через области неоднородности показателя преломления, способен расщепиться на небольшое число мод, которые затем распространяются по волокну разными оптическими путями и с разной скоростью. Это явление известно как дифференциальная модовая задержка DMD. В результате появляется фазовый сдвиг между модами, приводящий к нежелательной интерференции на приемной стороне и к значительному росту числа ошибок (рис.3а). Замети, что эффект проявляется только при одновременном стечении ряда обстоятельств: менее удачное волокно, менее удачный лазерный передатчик (разумеется удовлетворяющие стандарту) и менее удачный ввод излучения в волокно. С физической стороны, эффект DMD связан с тем, что энергия от когерентного источника распределяется внутри небольшого числа мод, в то время как некогерентный источник равномерно возбуждает огромное число мод. Исследования показывают, что эффект проявляется сильней при использовании длинноволновых лазеров (окно прозрачности 1300 нм).

Рис.3. Распространение когерентного излучения в многомодовом волокне: а) Проявление эффекта дифференциальной модовой задержки (DMD) при осевом вводе излучения; б) Неосевой ввод когерентного излучения в многомодовое волокно.

Указанная аномалия в худшем случае может вести к уменьшению максимальной длины сегмента на основе многомодового ВОК. Поскольку стандарт должен обеспечивать 100-процентную гарантию работы, максимальна длина должна сегмента регламентироваться с учетом возможного проявления эффекта DMD.

Интерфейс 1000Base-LX . Для того, чтобы сохранить большее расстояние и избежать непредсказуемости поведения канала Gigabit Ethernet из-за аномалии, предложено вводить излучение в нецентральную часть сердцевины многомодового волокна. Излучение из-за апертурного расхождения успевает равномерно распределиться по всей сердцевине волокна, сильно ослабляя проявление эффекта, хотя максимальная длина сегмента и после этого остается ограниченной, (табл.2). Специально разработаны переходные одномодовые оптические шнуры MCP (mode conditioning patch-cords), у которых один из соединителей (а именно тот, который планируется сопрягать с многомодовым волокном) имеет небольшое смещение от оси сердцевины волокна. Оптический шнур, у которого один соединитель - Duplex SC со смещенной сердцевиной, а другой - обычный Duplex SC, может называться так: MCP Duplex SC - Duplex SC. Разумеется такой шнур не подходит для использования в традиционных сетях, например в Fast Ethernet, из-за больших вносимых потерь на стыке с MCP Duplex SC. Переходной MCP может быть комбинированным на основе одномодового и многомодового волокна и содержать элемент смещения между волокнами внутри себя. Тогда одномодовым концом он подключается к лазерному передатчику. Что же касается приемника, то к нему может подключаться стандартный многомодовый соединительный шнур. Использование переходных MCP шнуров позволяет заводить излучение в многомодовое волокно через область, смещенную на 10-15 мкм от оси (рис.3б). Таким образом, сохраняется возможность использования интерфейсных портов 1000Base-LX и с одномодовыми ВОК, поскольку там ввод излучения будет осуществляться строго по центру сердцевины волокна.

Интерфейс 1000Base-SX . Так как интерфейс 1000Base-SX стандартизован только для использования с многомодовым волокном, то смещение области ввода излучения от центральной оси волокна можно реализовать внутри самого устройства, тем самым снять необходимость использования согласующего оптического шнура.

интерфейс 1000Base-T

1000Base-T - это стандартный интерфейс Gigabit Ethernet передачи по неэкранированной витой паре категории 5 и выше на расстояния до 100 метров. Для передачи используются все четыре пары медного кабеля, скорость передачи по одной паре 250 Мбит/c. Предполагается, что стандарт будет обеспечивать дуплексную передачу, причем данные по каждой паре будут передаваться одновременно сразу в двух направлениях - двойной дуплекс (dual duplex). 1000Base-T. Технически реализовать дуплексную передачу 1 Гбит/с по витой паре UTP cat.5 оказалось довольно сложно, значительно сложней чем в стандарте 100Base-TX. Влияние ближних и дальних переходных помех от трех соседних витых пар на данную пару в четырехпарном кабеле требует разработки специальной скремблированной помехоустойчивой передачи, и интеллектуального узла распознавания и восстановления сигнала на приеме. Несколько методов кодирования первоначально рассматривались в качестве кандидатов на утверждение в стандарте 1000Base-T, среди которых: 5- уровневое импульсно-амплитудное кодирование PAM-5; квадратурная амплитудная модуляция QAM-25, и др. Ниже приведены кратко идеи PAM-5, окончально утвержденного в качестве стандарта.

Почему 5-уровневое кодирование. Распространенное четырехуровневое кодирование обрабатывает входящие биты парами. Всего существует 4 различных комбинации - 00, 01, 10, 11. Передатчик может каждой паре бит установить свой уровень напряжения передаваемого сигнал, что уменьшает в 2 раза частоту модуляции четырехуровневого сигнала, 125 МГц вместо 250 МГц, (рис.4), и следовательно частоту излучения. Пятый уровень добавлен для создания избыточности кода. В результате чего становится возможной коррекция ошибок на приеме. Это дает дополнительный резерв 6 дБ в соотношении сигнал/шум.

Рис.4. Схема 4-х уровневого кодирования PAM-4

уровень MAC

Уровень MAC стандарта Gigabit Ethernet использует тот же самый протокол передачи CSMA/CD что и его предки Ethernet и Fast Ethernet. Основные ограничения на максимальную длину сегмента (или коллизионного домена) определяются этим протоколом.

В стандарте Ethernet IEEE 802.3 принят минимальный размер кадра 64 байта. Именно значение минимального размера кадра определяет максимальное допустимое расстояние между станциями (диаметр коллизионного домена). Время, которого станция передает такой кадр - время канала - равно 512 BT или 51,2 мкс. Максимальная длина сети Ethernet определяется из условия разрешения коллизий, а именно время, за которое сигнал доходит до удаленного узла и возвращается обратно RDT не должно превышать 512 BT (без учета преамбулы).

При переходе от Ethernet к Fast Ethernet скорость передачи возрастает, а время трансляции кадра длины 64 байта соответственно сокращается - оно равно 512 BT или 5,12 мкс (в Fast Ethernet 1 BT = 0,01 мкс). Для того, чтобы можно было обнаруживать все коллизии до конца передачи кадра, как и раньше необходимо удовлетворить одному из условий:

В Fast Ethernet был оставлен такой же минимальный размер кадра, как в Ethernet. Это сохранило совместимость, но привело к значительному уменьшению диаметра коллизионного домена.

Опять же в силу преемственности стандарт Gigabit Ethernet должен поддерживать те же минимальный и максимальный размеры кадра, которые приняты в Ethernet и Fast Ethernet. Но поскольку скорость передачи возрастает, то соответственно уменьшается и время передачи пакета аналогичной длины. При сохранении прежней минимальной длины кадра это привело бы к уменьшению диаметра сети, который не превышал бы 20 метров, что могло быть мало полезным. Поэтому, при разработке стандарта Gigabit Ethernet было принято решение увеличить время канала. В Gigabit Ethernet оно составляет 4096 BT и в 8 раз превосходит время канала Ethernet и Fast Ethernet. Но, чтобы поддержать совместимость со стандартами Ethernet и Fast Ethernet, минимальный размер кадра не был увеличен, а было добавлено к кадру дополнительное поле, получившее название "расширение носителя".

расширение носителя (carrier extension)

Символы в дополнительном поле обычно не несут служебной информации, но они заполняют канал и увеличивают "коллизионное окно". В результате, коллизия будет регистрироваться всеми станциями при большем диаметре коллизионного домена.

Если станция желает передать короткий (меньше 512 байт) кадр, до при передаче добавляется это поле - расширение носителя, дополняющее кадр до 512 байт. Поле контрольной суммы вычисляется только для оригинального кадра и не распространяется на поле расширения. При приеме кадра поле расширения отбрасывается. Поэтому уровень LLC даже и не знает о наличии поля расширения. Если размер кадра равен или превосходит 512 байт, то поле расширения носителя отсутствует. На рис.5 показан формат кадра Gigabit Ethernet при использовании расширения носителя.

Рис.5. Кадр Gigabit Ethernet с полем расширения носителя.

пакетная перегруженность (Packet Bursting)

Расширение носителя - это наиболее естественное решение, которое позволило сохранить совместимость со стандартом Fast Ethernet, и такой же диаметр коллизионного домена. Но оно привело к излишней трате полосы пропускания. До 448 байт (512-64) может расходоваться в холостую при передаче короткого кадра. На стадии разработки стандарта Gigabit Ethernet компанией NBase Communications было внесено предложение по модернизации стандарта. Эта модернизация, получившая название пакетная перегруженность, позволяет эффективней использовать поле расширения. Если у станции/коммутатора имеется несколько небольших кадров для отправки, то первый кадр дополняется полем расширения носителя до 512 байт, и отправляется. Остальные кадры отправляются вслед с минимальным межкадровым интервалом в 96 бит, с одним важным исключением - межкадровый интервал заполняется символами расширения, (рис.6а). Таким образом среда не замолкает между посылками коротких оригинальных кадров, и ни какое другое устройство сети не может вклиниться в передачу. Такое пристраивание кадров может происходить до тех пор, пока полное число переданных байт не превысит 1518. Пакетная перегруженность уменьшать вероятность образования коллизий, поскольку перегруженный кадр может испытать коллизию только на этапе передачи первого своего оригинального кадра, включая расширение носителя, что безусловно увеличивает производительность сети, особенно при больших нагрузках (рис.6-б).

Рис.6. Пакетная перегруженность: а) передача кадров; б) поведение полосы пропускания.

По материалам компании «Телеком Транспорт»



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: