Что такое wi fi 802.11 n. Все существующие стандарты Wi-Fi-сетей. Более широкая полоса пропускания

Популярность Wi-Fi-соединения растёт с каждым днём, поскольку огромными темпами увеличивается спрос на этот вид сети. Смартфоны, планшеты, ноутбуки, моноблоки, телевизоры, компьютеры - вся наша техника поддерживает беспроводное подключение к интернету, без которого уже невозможно представить жизнь современного человека.

Технологии передачи данных развиваются вместе с выпуском новой техники

Для того чтобы подобрать подходящую для ваших нужд сеть, необходимо узнать про все стандарты Wi-Fi, существующие на сегодняшний день. Компанией Wi-Fi Alliance разработано более двадцати технологий подключения, четыре из которых сегодня наиболее востребованы: 802.11b, 802.11a, 802.11g и 802.11n. Самым последним открытием производителя стала модификация 802.11ас, показатели которой в несколько раз превышают характеристики современных адаптеров.

Является старшей сертифицированной технологией беспроводного подключения и отличается общей доступностью. Устройство обладает весьма скромными параметрами:

  • Скорость передачи информации - 11 Мбит/с;
  • Диапазон частот - 2,4 ГГц;
  • Радиус действия (при отсутствии объёмных перегородок) - до 50 метров.

Следует отметить, что этот стандарт имеет слабую помехоустойчивость и низкую пропускную способность. Поэтому, несмотря на привлекательную цену этого Wi-Fi-подключения, его техническая составляющая значительно отстаёт от более современных моделей.

Стандарт 802.11a

Эта технология представляет собой улучшенную версию предыдущего стандарта. Разработчики сделали упор на пропускную способность устройства и его тактовую частоту. Благодаря таким изменениям, в этой модификации отсутствует влияние других устройств на качество сигнала сети.

  • Диапазон частот - 5 ГГц;
  • Радиус действия - до 30 метров.

Однако все преимущества стандарта 802.11a компенсированы в равной степени его недостатками: уменьшенным радиусом подключения и высокой (по сравнению с 802.11b) ценой.

Стандарт 802.11g

Обновлённая модификация выходит в лидеры сегодняшних стандартов беспроводных сетей, поскольку поддерживает работу с распространённой технологией 802.11b и, в отличие от неё, имеет достаточно высокую скорость соединения.

  • Скорость передачи информации - 54 Мбит/с;
  • Диапазон частот - 2,4 ГГц;
  • Радиус действия - до 50 метров.

Как вы могли заметить, тактовая частота снизилась до 2,4 ГГц, но зона покрытия сети вернулась до прежних показателей, характерных для 802.11b. Кроме того, цена на адаптер стала более доступной, что является весомым преимуществом при выборе оборудования.

Стандарт 802.11n

Несмотря на то, что эта модификация уже давно появилась на рынке и обладает внушительными параметрами, производители до сих пор работают над её улучшением. В связи с тем, что она несовместима с предыдущими стандартами, её популярность невелика.

  • Скорость передачи информации - теоретически до 480 Мбит/с, а на практике выходит вполовину меньше;
  • Диапазон частот - 2,4 или 5 ГГц;
  • Радиус действия - до 100 метров.

Так как этот стандарт до сих пор развивается, у него есть характерные особенности: он может конфликтовать с оборудованием, поддерживающим 802.11n, только потому, что производители устройств разные.

Другие стандарты

Кроме популярных технологий, производитель Wi-Fi Alliance разработал и другие стандарты для более специализированного применения. К числу таких модификаций, исполняющих сервисные функции, относятся:

  • 802.11d - делает совместимым устройства беспроводной связи разных производителей, адаптирует их к особенностям передачи данных на уровне всей страны;
  • 802.11e - определяет качество отправляемых медиафайлов;
  • 802.11f - управляет многообразием точек доступа разных производителей, позволяет одинаково работать в разных сетях;

  • 802.11h - предотвращает потерю качества сигнала при влиянии метеорологического оборудования и военных радаров;
  • 802.11i - улучшенная версия защиты личной информации пользователей;
  • 802.11k - следит за нагрузкой определённой сети и перераспределяет пользователей на другие точки доступа;
  • 802.11m - содержит в себе все исправления стандартов 802.11;
  • 802.11p - определяет характер Wi-Fi-устройств, находящихся в диапазоне 1 км и движущихся со скоростью до 200 км/ч;
  • 802.11r - автоматически находит беспроводную сеть в роуминге и подключает к ней мобильные устройства;
  • 802.11s - организует полносвязное соединение, где каждый смартфон или планшет может быть маршрутизатором или точкой подключения;
  • 802.11t - эта сеть тестирует весь стандарт 802.11 целиком, выдаёт способы проверки и их результаты, выдвигает требования для работы оборудования;
  • 802.11u - эта модификация известна всем по разработкам Hotspot 2.0. Она обеспечивает взаимодействие беспроводных и внешних сетей;
  • 802.11v - в этой технологии создаются решения для совершенствования модификаций 802.11;
  • 802.11y - незаконченная технология, связывающая частоты 3,65–3,70 ГГц;
  • 802.11w - стандарт находит способы усиления защиты доступа к передаче информации.

Новейший и самый технологичный стандарт 802.11ас

Устройства модификации 802.11ас предоставляют пользователям абсолютно новое качество работы в интернете. Среди преимуществ этого стандарта следует выделить следующие:

  1. Высокая скорость. При передаче данных посредством сети 802.11ас используются более широкие каналы и повышенная частота, что увеличивает теоретическую скорость до 1,3 Гбит/с. На практике пропускная способность составляет до 600 Мбит/с. Кроме того, устройство на базе 802.11ас передаёт больше данных за один такт.

  1. Увеличенное количество частот. Модификация 802.11ас оснащена целым ассортиментом частот 5 ГГц. Новейшая технология обладает более сильным сигналом. Адаптер с высоким диапазоном охватывает полосу частот до 380 МГц.
  2. Зона покрытия сети 802.11ас. Этот стандарт предоставляет более широкий радиус действия сети. Кроме того, Wi-Fi-подключение работает даже через бетонные и гипсокартонные стены. Помехи, возникающие при работе домашней техники и соседского интернета, никак не влияют на работу вашего соединения.
  3. Обновлённые технологии. 802.11ас оснащён расширением MU-MIMO, которое обеспечивает бесперебойную работу нескольких устройств в сети. Технология Beamforming определяет устройство клиента и направляет ему сразу несколько потоков информации.

Познакомившись поближе со всеми существующими на сегодняшний день модификациями Wi-Fi-соединения, вы без труда сможете выбрать подходящую для ваших потребностей сеть. Следует напомнить, что большинство устройств содержит стандартный адаптер 802.11b, который также поддерживается технологией 802.11g. Если вы ищете беспроводную сеть 802.11ас, то количество оснащённых ею устройств сегодня невелико. Однако это весьма актуальная проблема и в скором времени всё современное оборудование перейдёт на стандарт 802.11ас. Не забудьте позаботиться о безопасности доступа в интернет, установив сложный код на своё Wi-Fi-соединение и антивирус для защиты компьютера от вирусного ПО.

Существует несколько разновидностей WLAN-сетей, которые различаются схемой организации сигнала, скоростями передачи данных, радиусом охвата сети, а также характеристиками радиопередатчиков и приемных устройств. Наибольшее распространение получили беспроводные сети стандарта IEEE 802.11b, IEEE 802.11g, IEEE 802.11n, IEEE 802.11ac и другие.

Первыми в 1999 г. были утверждены спецификации 802.11a и 802.11b, тем не менее наибольшее распространение получили устройства, выполненные по стандарту 802.11b.

Стандарт Wi-Fi 802.11b

Стандарт 802.11b основан на методе широкополосной модуляции с прямым расширением спектра (Direct Sequence Spread Spectrum, DSSS). Весь рабочий диапазон делится на 14 каналов, разнесенных на 25 МГц для исключения взаимных помех. Данные передаются по одному из этих каналов без переключения на другие. Возможно одновременное использование всего 3 каналов. Скорость передачи данных может автоматически меняться в зависимости от уровня помех и расстояния между передатчиком и приемником.

Стандарт IEEE 802.11b реализует максимальную теоретическую скорость передачи 11 Мбит/с, что сравнимо с кабельной сетью 10 BaseT Ethernet. Следует учитывать, что такая скорость возможна при передаче данных одним WLAN-устройством. Если в среде одновременно функционирует большее число абонентских станций, то полоса пропускания распределяется между всеми и скорость передачи данных на одного пользователя падает.

Стандарт Wi-Fi 802.11a

Стандарт 802.11a был принят в 1999 году, тем не менее нашел свое применение только с 2001 года. Данный стандарт используется, в основном, в США и Японии. В России и в Европе он не получил широкого распространения.

В стандарте 802.11a применяется схема модуляции сигнала - мультиплексирование с разделением по ортогональным частотам (Orthogonal Frequency Division Multiplexing, OFDM). Основной поток данных разделяется на несколько параллельных субпотоков с относительно низкой скоростью передачи, и затем для их модуляции применяется соответствующее число несущих. Стандартом определены три обязательные скорости передачи данных (6, 12 и 24 Мбит/с) и пять дополнительных (9, 18, 24, 48 и 54 Мбит/с). Также имеется возможность одновременного использования двух каналов, что повышает скорость передачи данных в 2 раза.

Стандарт Wi-Fi 802.11g

Стандарт 802.11g окончательно был утверждён в июне 2003г. Он является дальнейшим усовершенствованием спецификации IEEE 802.11b и реализует передачу данных в том же частотном диапазоне. Главным преимуществом этого стандарта является повышенная пропускная способность - скорость передачи данных в радиоканале достигает 54 Мбит/с по сравнению с 11 Мбит/с у 802.11b. Как и IEEE 802.11b, новая спецификация функционирует в диапазоне 2,4 ГГц, однако для повышения скорости используется та же схема модуляции сигнала, что и в 802.11a - ортогональное частотное мультиплексирование (OFDM).

Стандарт 802.11g совместим с 802.11b. Так адаптеры 802.11b могут работать в сетях 802.11g (но при этом не быстрее 11 Мбит/с), а адаптеры 802.11g могут снижать скорость передачи данных до 11 Мбит/с для работы в старых сетях 802.11b.

Стандарт Wi-Fi 802.11n

Стандарт 802.11 n был ратифицирован 11 сентября 2009. Он увеличивает скорость передачи данных практически в 4 раза по сравнению с устройствами стандартов 802.11g (максимальная скорость которых равна 54 Мбит/с), при условии использования в режиме 802.11n с другими устройствами 802.11n. Максимальная теоретическая скорость передачи данных составляет 600 Мбит/с, применяя передачу данных сразу по четырём антеннам. По одной антенне – до 150 Мбит/с.

Устройства 802.11n функционируют в частотных диапазонах 2,4 – 2,5 или 5,0 ГГц.

В основе стандарта IEEE 802.11n лежит технология OFDM-MIMO. Большинство функционала позаимствовано из стандарта 802.11a, тем не менее в стандарте IEEE 802.11n имеется возможность применения как частотного диапазона, принятого для стандарта IEEE 802.11a, так и частотного диапазона, принятого для стандартов IEEE 802.11b/g. Таким образом, устройства, поддерживающие стандарт IEEE 802.11n, могут функционировать в частотном диапазоне либо 5, либо 2,4 ГГц, причем конкретная реализация зависит от страны. Для России устройства стандарта IEEE 802.11n будут поддерживать частотный диапазон 2,4 ГГц.

Увеличение скорости передачи в стандарте IEEE 802.11n достигается за счет: удвоения ширины канала с 20 до 40 МГц, а также вследствие реализации технологии MIMO.

Стандарт Wi-Fi 802.11ac

Стандарт 802.11ас представляет собой дальнейшее развитие технологий, введенных в стандарт 802.11n. В спецификациях устройства стандарта 802.11ас отнесены к классу VHT (Very High Throughput) – с очень высокой пропускной способностью. Сети стандарта 802.11ас работают исключительно в диапазоне 5 ГГц. Полоса радиоканала может составлять 20, 40, 80 и 160 МГц. Возможно также объединение двух радиоканалов 80 + 80 МГц.

Сравнение 802.11n и 802.11ac

802.11 n

802.11ас

Полоса пропускания

20 и 40 МГц

Добавлена ширина канала 80 и 160 МГц

Диапазоны 2,4 ГГц и 5 ГГц

Только 5 ГГц

Поддерживает модуляции
2-ФМ, 4-ФМ, 16-КАМ и 64-КАМ

К модуляциям 2-ФМ, 4-ФМ, 16-КАМ и 64-КАМ добавлена 256-КАМ

Однопользовательская передача MIMO

Многопользовательская передача MIMO

Агрегация МАС-фреймов: A-MSDU, A-MPDU

Расширенные возможности агрегации МАС-фреймов

Источники:

1. А.Н. Степутин, А.Д. Николаев. Мобильная связь на пути к 6G . В 2 Т. – 2-е изд. - Москва-Вологда: Инфра-Инженерия, 2018. – 804с. : ил.

2. А.Е. Рыжков, В. А. Лаврухин Гетерогенные сети радиодоступа: учебное пособие. - СПб. : СПбГУТ, 2017. – 92 с.

Протокол Wireless Fidelity был разработан, страшно подумать, в 1996 году. Первое время он обеспечивал пользователя минимальной скоростью передачи данных. Но спустя примерно каждые три года внедрялись новые стандарты Wi-Fi. Они увеличивали скорость приема и передачи данных, а также слегка увеличивали ширину покрытия. Каждая новая версия протокола обозначается одной или двумя латинскими буквами, следующими после цифр 802.11 . Некоторые стандарты Wi-Fi являются узкоспециализированными - они никогда в смартфонах не использовались. Мы же поговорим только о тех версиях протокола передачи данных, о которых необходимо знать рядовому пользователю.

Самый первый стандарт не имел никакого буквенного обозначения. Он появился на свет в 1996 году и использовался в течение примерно трех лет. Данные по воздуху при применении этого протокола скачивались со скоростью 1 Мбит/с. По современным меркам это чрезвычайно мало. Но давайте вспомним, что о выходе в «большой» интернет с портативных устройств тогда и речи не было. В те годы ещё даже WAP толком не был развит, интернет-странички в котором редко весили более 20 Кб.

В целом, преимущества новой технологии тогда никто не оценил. Стандарт использовался в строго специфических целях - для отладки оборудования, удаленной настройки компьютера и прочих премудростей. Рядовые пользователи в те времена о сотовом телефоне могли только мечтать, а слова «беспроводная передача данных» стали понятны им только спустя несколько лет.

Однако низкая популярность не помешала протоколу развиваться. Постепенно начали появляться девайсы, повышающие мощность модуля передачи данных. Скорость при той же версии Wi-Fi возросла вдвое - до 2 Мбит/с. Но было понятно, что это предел. Поэтому Wi-Fi Alliance (объединение из нескольких крупных компаний, созданное в 1999 году) пришлось разрабатывать новый стандарт, который обеспечивал бы более высокую пропускную способность.

Wi-Fi 802.11a

Первым творением Wi-Fi Alliance стал протокол 802.11a, который тоже не стал сколь-либо популярным. Его отличие заключалось в том, что техника могла использовать частоту 5 ГГц. В результате скорость передачи данных выросла до 54 Мбит/с. Проблема же заключалась в том, что с использовавшейся ранее частотой 2,4 ГГц этот стандарт был несовместим. В результате производителям приходилось устанавливать двойной приемопередатчик, чтобы обеспечить работу в сетях на обеих частотах. Нужно ли говорить, что это совершенно не компактное решение?

В смартфонах и мобильных телефонах данная версия протокола практически не применялась. Объясняется это тем, что спустя примерно год вышло гораздо более удобное и популярное решение.

Wi-Fi 802.11b

При проектировании этого протокола создатели вернулись к частоте 2,4 ГГц, обладающей неоспоримым достоинством - широкой зоной покрытия. Инженерам удалось добиться того, что гаджеты научились передавать данные на скорости от 5,5 до 11 Мбит/с. Поддержку данного стандарта тут же начали получать все маршрутизаторы. Постепенно начал появляться такой Wi-Fi и в популярных портативных устройствах. Например, его поддержкой мог похвастать смартфон E65. Что немаловажно, Wi-Fi Alliance обеспечил совместимость с самой первой версией стандарта, благодаря чему переходный период прошел совершенно незаметно.

Вплоть до конца первого десятилетия 2000-х годов многочисленной техникой использовался именно протокол 802.11b. Предоставляемых им скоростей хватало и смартфонам, и портативным игровым консолям, и ноутбукам. Поддерживают этот протокол и практически все современные смартфоны. Это значит, что если у вас в комнате расположен очень старый роутер, который не может передавать сигнал по более современным версиям протокола, смартфон сеть всё же распознает. Хотя быстротой передачи данных вы точно будете недовольны, так как сейчас мы используем совсем другие стандарты скорости.

Wi-Fi 802.11g

Как вам уже стало понятно, эта версия протокола обратно совместима с предыдущими. Объясняется это тем, что рабочая частота не изменилась. При этом инженерам удалось повысить скорость приема и отправки данных до 54 Мбит/с. Релиз стандарта произошел в 2003 году. Некоторое время такая скорость казалась даже избыточной, поэтому многие производители мобильников и смартфонов медлили с его внедрением. Зачем нужна столь быстрая передача данных, если объем встроенной памяти у портативных устройств частенько ограничивался 50-100 Мб, а полноценные интернет-страницы на маленьком экране попросту не отображались? И всё же постепенно протокол завоевал популярность, в основном за счет ноутбуков.

Wi-Fi 802.11n

Самое масштабное обновление стандарта случилось в 2009 году. На свет появился протокол Wi-Fi 802.11n. В тот момент смартфоны уже научились качественно отображать тяжелый веб-контент, поэтому новый стандарт пришелся очень кстати. Его отличия от предшественников заключались в увеличившейся скорости и теоретической поддержке частоты 5 ГГц (при этом 2,4 ГГц тоже никуда не делись). Впервые в протокол была внедрена поддержка технологии MIMO . Она заключается в поддержке приема и передачи данных одновременно по нескольким каналам (в данном случае - по двум). Это позволяло в теории добиться скорости на уровне 600 Мбит/с. На практике же она редко превышала 150 Мбит/с. Сказывалось наличие помех на пути сигнала от маршрутизатора к принимающему устройству, да и многие роутеры для экономии лишались поддержки MIMO. Равно как бюджетные устройства всё же не получали возможность работы в частоте 5 ГГц. Их создатели объясняли тем, что частота 2,4 ГГц в тот момент ещё не была сильно нагружена, в связи с чем покупатели роутера толком ничего не теряли.

Стандарт Wi-Fi 802.11n до сих пор активно эксплуатируется. Хотя многие пользователи уже отметили ряд его недостатков. Во-первых, из-за частоты 2,4 ГГц им не поддерживается объединение более двух каналов, из-за чего теоретический предел скорости никогда не достигается. Во-вторых, в гостиницах, торговых центрах и прочих людных местах каналы начинают наслаиваться друг на друга, что вызывает помехи - интернет-страницы и контент грузятся очень медленно. Все эти проблемы решил релиз следующего стандарта.

Wi-Fi 802.11ac

На момент написания статьи самый новый и самый быстрый протокол. Если предыдущие виды Wi-Fi работали в основном в частоте 2,4 ГГц, имеющей ряд ограничений, то здесь используются строго 5 ГГц. Это практически вдвое снизило ширину покрытия. Впрочем, производители маршрутизаторов решают данную проблему установкой направленных антенн. Каждая из них отправляет сигнал в свою сторону. Однако некоторым людям это всё же покажется неудобным по следующим причинам:

  • Роутеры получаются громоздкими, так как в их составе присутствуют четыре или даже большее число антенн;
  • Желательно устанавливать маршрутизатор где-то посредине между всеми обслуживаемыми помещениями;
  • Роутеры с поддержкой Wi-Fi 802.11ac потребляют больше электричества, нежели старые и бюджетные модели.

Главное достоинство нового стандарта заключается в десятикратном росте скорости и расширенной поддержке технологии MIMO. Отныне объединяться могут до восьми каналов! В результате теоретический поток данных составляет 6,93 Гбит/с. На практике скорости гораздо ниже, но даже их вполне хватает для того, чтобы посмотреть на устройстве какой-нибудь 4K-фильм онлайн.

Некоторым людям возможности нового стандарта кажутся излишними. Поэтому многие производители не внедряют его поддержку в . Не всегда протокол поддерживается и даже достаточно дорогими девайсами. Например, его поддержки лишён (2016), который даже после снижения ценника невозможно отнести к бюджетному сегменту. Узнать о том, какие стандарты Wi-Fi поддерживает ваш смартфон или планшет, достаточно просто. Для этого посмотрите его полные технические характеристики в интернете, либо запустите .

Сегодня мы рассмотрим все существующие стандарты IEEE 802.11 , которые предписывают использование определенных методов и скоростей передачи данных, методов модуляции, мощности передатчиков, полос частот, на которых они работают, методов аутентификации, шифрования и многое другое.

С самого начала сложилось так, что некоторые стандарты работают на физическом уровне, некоторые - на уровне среды передачи данных, а остальные — па более высоких уровнях модели взаимодействия открытых систем .

Существуют следующее группы стандартов:

IEEE 802.11а, IEEE 802.11b, IEEE 802.11g, IEEE 802.11n и IEEE 802.11ac дописывают работу сетевого оборудования (физический уровень).
Стандарт IEEE 802.11d, IEEE 802.11e, IEEE 802.11i, IEEE 802.11j, IEEE 802.11h и IEEE.
802.11r — параметры среды, частоты радиоканала, средства безопасности, способы передачи мультимедийных данных и т. д..
IEEE 802.11f IEEE 802.11с- принцип взаимодействия точек доступа между собой, работу радиомостов и т. п.

IEEE 802.11

Стандарт IE ЕЕ 802.11 был «первенцем» среди стандартов беспроводной сети. Работу над ним начали еще в 1990 году. Как и полагается, этим занималась рабочая группа из IEEE, целью которой было создание единого стандарта для радиооборудования, которое работало на частоте 2,4 ГГц. При этом ставилась задача достичь скорости 1 и 2 Мбит/с при использовании методов DSSS и FHSS соответственно.

Работа над созданием стандарта закончилась через 7 лет. Цель была достигнута но скорость. которую обеспечивал новый стандарт, оказалась слишком малой дли современных потребностей. Поэтому рабочая группа из IEEE начала разработку новых, более скоростных, стандартов.
Разработчики стандарта 802.11 учитывали особенности сотовой архитектуры системы.

Почему сотовой? Очень просто: достаточно вспомнить, что волны распространяются в разные стороны на определенный радиус. Получается, что внешне зона напоминает соту. Каждая такая сота работает под управлением базовой станции, в качестве которой выступает точка доступа. Часто соту называют базовой зоной обслуживания .

Чтобы базовые зоны обслуживания могли общаться между собой, существует специальная распределительная система (Distribution System. DS). Недостатком распределительной системы стандарта 802.11 является невозможность роуминга.

Стандарт IEEE 802.11 предусматривает работу компьютеров без точки доступа, в составе одной соты. В этом случае функции точки доступа выполняют сами рабочие станции.

Этот стандарт разработан и ориентирован на оборудование, функционирующее в полосе частот 2400-2483,5 МГц. При этом радиус соты достигает 300 м, не ограничивая топологию сети.

IEEE 802.11а

IEEE 802.11a это один из перспективных стандартов беспроводной сети, который рассчитан на работу в двух радиодиапазонах - 2,4 и 5 ГГц. Используемый метод OFDM позволяет достичь максимальной скорости передачи данных 54 Мбнт/с. Кроме этой, спецификациями предусмотрены и другие скорости:

  • обязательные 6. 12 н 24 Мбнт/с;
  • необязательные - 9, 18.3G. 18 и 54 Мбнт/с.

Этот стандарт также имеет свои преимущества и недостатки. Из преимуществ можно отметить следующие:

  • использование параллельной передачи данных;
  • высокая скорость передачи;
  • возможность подключения большого количества компьютеров.

Недостатки стандарта IEEE 802.1 1a такие:

  • меньший радиус сети при использовании диапазона 5 ГГц (примерно 100 м): J большая потребляемая мощность радиопередатчиков;
  • более высокая стоимость оборудования по сравнению с оборудованием других стандартов;
  • для использования диапазона 5 ГГц требуется наличие специального разрешения.

Для достижения высоких скоростей передачи данных стандарт IEEE 802.1 1a использует в своей работе технологию квадратурной амплитудной модуляции QAM .

IEEE 802.11b

Работа над стандартом IEEE 802 11b (другое название IFEE 802.11 High rate, высокая пропускная способность) была закончена в 1999 году, и именное ним связано название Wi-Fi (Wireless Fidelity, беспроводная точность).

Работа данного стандарта основана на методе прямого расширения спектра (DSSS) с использованием восьмиразрядных последовательностей Уолша. При этом каждый бит данных кодируется с помощью последовательности дополнительных кодов (ССК). Это позволяет достичь скорости передачи данных 11 Мбит/с.

Как и базовый стандарт, IEEE 802.11b работает с частотой 2.4 ГГц, используя не более трех не перекрывающихся каналов. Радиус действия сети при этом составляет около 300 м.

Отличительной особенностью этого стандарта является то, что при необходимость (например, при ухудшении качества сигнала, большой удаленности от точки доступа. различных помехах) скорость передачи данных может уменьшаться вплоть до 1 Мбнт/с. Напротив, обнаружив, что качество сигнала улучшилось, сетевое оборудование автоматически повышает скорость передачи до максимальной Этот механизм называется динамическим сдвигом скорости.

Кроме оборудования стандарта IEEE 802.11b. часто встречалось оборудование IEEE 802.11Ь* . Отличие между этими стандартами заключается лишь в скорости передачи данных. В последнем случае она составляет 22 Мбит/с благодаря использованию метода двоичного пакетного свёрточного кодирования (Р8СС).

IEEE 802.11d

Стандарт IEEE 802.11d определяет параметры физических каналов и сетевого оборудования. Он описывает правила, касающиеся разрешенной мощности излучения передатчиков в диапазонах частот, допустимых законами.

Этот стандарт очень важен, поскольку для работы сетевого оборудования используются радиоволны. Если они не будут соответствовать указанным параметрам. То могут помешать другим устройствам. работающим в этом или близлежащем диапазоне частот.

IEEE 802.11е

Поскольку но сети могут передаваться данные разных форматов и важности, существует потребность в механизме, который бы определял их важность и присваивал необходимый приоритет. За это отвечает стандарт IEEE 802.11е, разработанный с целью передачи потоковых видео- или аудиоданных с гарантированным качеством и доставкой.

IEEE 802.11f

Стандарт IEEE 802.11f разработан с келью обеспечения аутентификации сетевого оборудования (рабочей станции) при перемещении компьютера пользователя от одной точки доступа к другой, то есть между сегментами сети. При этом вступает в действие протокол обмена служебной информацией IAPP (Inter-Access Point Protocol) , который необходим для передачи данных между точками доступа При этом достигается эффективная организация работы распределенных беспроводных сетей.

IEEE 802.11g

Вторым по популярности на сегодняшний день стандартом можно считать стандарт IEEE 802.11g. Целью создания данного стандарта было достижение скорости передачи данных 54 Мбит/с .
Как и IEEE 802.11b. стандарт IEEE 802.11g разработан для работы в частотном диапазоне 2,4 ГГц. IEEE 802.11g предписывает обязательные и возможные скорости передачи данных:

  • обязательные -1;2;5,5;6; 11; 12 и 24 Мбит/с;
  • возможные - 33;36;48 н 54 Мбит/с.

Для достижения таких показателен используется кодирование с помощью последовательности дополнительных кодов (ССК). метод ортогонального частотною мультиплексирования (OFDM), метод гибридного кодирования (ССК-OFDM) и метод двоичною пакетного свёрточного кодирования (РВСС).

Стоит отметить, что одной и той же скорости можно достичь разными методами, однако обязательные скорости передачи данных достигаются только с помощью методов ССК п OFDM , а возможные скорости с помощью методов ССК-OFDM и РВСС.

Преимуществом оборудования стандарта IEEE 802.11g является совместимость с оборудованием IEEE 802.11b. Вы сможете легко использовать свои компьютер с сетевой картой стандарта IEEE. 802.11b для работы с точкой доступа стандарта IEEE 802.11g. и наоборот. Кроме того, потребляемая мощность оборудования этого стандарта намного ниже, чем аналогичного оборудования стандарта IEEE 802.11а.

IEEE 802.11h

Стандарт IEEE 802.11h разработан с целью эффективного управления мощностью излучения передатчика, выбором несущей частоты передачи и генерации нужных отчетов. Он вносит некоторые новые алгоритмы в протокол доступа к среде МАС (Media Access Control, управление доступом к среде), а также в физический уровень стандарта IEEE 802.11a.

В первую очередь это связано с тем, что в некоторых странах диапазон 5 ГГц используется для трансляции спутникового телевидения, для радарного слежения за объектами н т. п., что может вносить помехи в работу передатчиков беспроводной сети.

Смысл работы алгоритмов стандарта IEEE 802.11h заключается в том. что при обнаружении отраженных сигналов (интерференции) компьютеры беспроводной сети (или передатчики) могут динамически переходить в другой диапазон, а также понижать или повышать мощность передатчиков. Это позволяет эффективнее организовать работу уличных и офисных радиосетей.

IEEE 802.11i

Стандарт IEEE 802.11i разработан специально для повышения безопасности работы беспроводной сети. С этой целью созданы разные алгоритмы шифрования и аутентификации, функции зашиты при обмене информацией, возможность генерирования ключей и т. д.:

  • AES (Advanced Encryption Standard, передовой алгоритм шифрования данных) - алгоритм шифрования, который позволяет работать с ключами длиной 128. 15)2 и 256 бит;
  • RADIUS (Remote Authentication Dial-In User Service, служба дистанционной аутентификации пользователя) — система аутентификации с возможностью генерирования ключей для каждой сессии и управления ими. включающая в себя алгоритмы проверки ПОДЛИННОСТИ пакетов и т.д.;
  • TKIР (Temporal Key Integrity Protocol, протокол целостности временных ключей) - алгоритм шифрования данных;
  • WRAP (Wireless Robust Authenticated Protocol, устойчивый беспроводной протокол аутентификации) - алгоритм шифрования данных;
  • ССМР (Counter with Cipher Block Chaining Message Authentication Code Protocol) - алгоритм шифрования данных.

IEEE 802.11 j

Стандарт IEEE 802.11j разработан специально для использования беспроводных сетей в Японии, а именно для работы в дополнительном диапазоне радиочастот 4.9-5 ГГц. Спецификация предназначена для Японии и расширяет стандарт 802.11а добавочным каналом 4.9 ГГц.

На данный момент частота 4,9 ГГц рассматривается как дополнительный диапазон для использования в США. Из официальных источников известно, что этот диапазон готовится для использования органами общественной и национальной безопасности.
Данным стандартом расширяется диапазон работы устройств стандарта IEEE 802.11a.

IEEE 802.11n

На сегодняшний день стандарт IEEE 802.11n самый распространенный из всех стандартов, касающихся беспроводных сетей.

В основе стандарта 802.11n:

  • Увеличение скорости передачи данных;
  • Расширение зоны покрытия;
  • Увеличение надежности передачи сигнала;
  • Увеличение пропускной способности.

Устройства 802.11n могут работать в одном из двух диапазонов 2.4 или 5.0 ГГц.

На физическом уровне (PHY) реализована усовершенствованная обработка сигнала и модуляции, добавлена возможность одновременной передачи сигнала через четыре антенны.

На сетевом уровне (MAC) реализовано более эффективное использование доступной пропускной способности. Вместе эти усовершенствования позволяют увеличить теоретическую скорость передачи данных до 600 Мбит/с – увеличение более чем в десять раз, по сравнению с 54 Мбит/с стандарта 802.11a/g (в настоящее время эти устройства уже считаются устаревшими).

В реальности, производительность беспроводной локальной сети зависит от многочисленных факторов, таких как среда передачи данных, частота радиоволн, размещение устройств и их конфигурация.

При использовании устройств стандарта 802.11n, крайне важно понять, какие именно усовершенствования были реализованы в этом стандарте, на что они влияют, а также как они совмещаются и сосуществуют с сетями устаревшего стандарта 802.11a/b/g беспроводных сетей.

Важно понять, какие именно дополнительные особенности стандарта 802.11n реализованы и поддерживаются в новых беспроводных устройствах.

Одним из основных моментов стандарта 802.11n является поддержка технологии MIMO (Multiple Input Multiple Output, Многоканальный вход/выход).
С помощью технологии MIMO реализована способность одновременного приема/передачи нескольких потоков данных через несколько антенн, вместо одной.

Стандарт 802.11n определяет различные антенные конфигурации «МхN», начиная с «1х1» до «4х4 » (самые распространенные на сегодняшний день это конфигурации «3х3» или «2х3»). Первое число (М) определяет количество передающих антенн, а второе число (N) определяет количество приемных антенн.

Например, точка доступа с двумя передающими и тремя приемными антеннами является «2х3» MIMO -устройством. В дальнейшем я более подробно опишу этот стандарт

IEEE 802.11г

Ни в одном беспроводном стандарте толком не описаны правила роуминга, то есть перехода клиента от одной зоны к другой. Это намереваются сделать в стандарте IEEE 802.11г.

Стандарт IEEE 802.11ac

Он обещает гигабитные беспроводные скорости для потребителей.

Первоначальный проект технической спецификации 802.11ac подтвердили рабочей группой (TGac) в прошлом году. В то время как ратификация Wi-Fi Alliance ожидается в конце этого года. Несмотря на то, что стандарт 802.11ac пока в стадии проекта и еще должен быть ратифицирован Wi-Fi Alliance и IEEE . Мы уже начинаем видеть продукты гигабитного Wi-Fi, доступные на рынке.

Характеристики стандарта нового поколения Wi-Fi 802.11ac:

WLAN 802.11ac использует целый ряд новых методов для достижения огромного прироста производительности к теоретически поддерживает гигабитный потенциал и обеспечение высоких пропускных способностей, таких как:

  • 6GHz полоса
  • Высокая плотность модуляции до 256 QAM.
  • Более широкие полосы пропускания — 80MHz для двух каналов или 160MHz для одного канала.
  • До восьми Multiple Input Multiple Output пространственных потоков.

Многопользовательские MIMO низкого энергопотребления 802.11ac ставят новые проблемы для разработки инженеров, работающих со стандартом. Далее мы обсудим эти проблемы и доступные решения, которые помогут разработке новых продуктов, основанных на этом стандарте.

Более широкая полоса пропускания:

802.11ac имеет более широкую полосу пропускания 80 MHz или даже 160 MHz по сравнению с предыдущим до 40 MHz в стандарте 802.11n. Более широкая полоса пропускания приводит к улучшению максимальной пропускной способности для цифровых систем связи.

Среди наиболее сложных задач проектирования и производства — генерация и анализ сигналов широкой полосы пропускания для 802.11ac. Потребуется тестирование оборудования, способного обрабатывать 80 или 160 MHz для проверки передатчиков, приемников и компонентов.

Для генерации 80 MHz сигналов, многие генераторы RF сигналов не имеют достаточно высокой частоты дискретизации для поддержки типичного минимума 2X соотношения пере дискретизации, которые дадут в результате необходимые образы сигналов. Используя правильные фильтрации и пере дискретизации сигнала из Waveform файла, возможно генерировать 80 MHz сигналы с хорошими спектральными характеристиками и EVM.

Для генерации сигналов 160 MHz , в широком диапазоне генератор волновых сигналов произвольной формы (AWG). Такие как Agilent 81180A, 8190A можно использовать для создания аналоговых I/Q сигналов.

Эти сигналы можно применить к внешнему I/Q. Как входы векторного генератора сигналов для преобразования частоты RF. Кроме того, можно создать 160 MHz сигналы с использованием 80 +80 MHz режима поддерживающего стандарт для создания двух сегментов 80 MHz в отдельных MCG или ESG генераторах сигнала, объединив затем радиосигналы.

MIMO:

MIMO является использованием нескольких антенн для повышения производительности системы связи. Вы могли видеть некоторые Wi-Fi точки доступа, имеющие более одной антенны. Которые торчат из них, — эти маршрутизаторы используют технологию MIMO.

Проверкой MIMO конструкций является изменение. Многоканальный генерации и анализ сигналов можно использовать для представления о производительности устройств MIMO. И оказания помощи в устранении неполадок и проверки проектов.

Усилитель Линейности:

Усилитель Линейности является характеристикой и усилителем. С помощью которого выходной сигнал усилителя остается верным входному сигналу по мере возрастания. Реально усилители линейности линейны только до предела, после которого выход насыщается.

Есть много методов для улучшения линейности усилителя. Цифровой предыскажения является одним из таких технику. Автоматизация проектирования программного обеспечения, как SystemVue обеспечивает приложение. Которое упрощает и автоматизирует цифрового дизайна предыскажений для усилителей мощности.

Совместимость с предыдущими версиями

Хотя стандарт 802.11n используется уже в течение многих лет. Но до сих пор также работают многие маршрутизаторы и беспроводные устройства более старых протоколов. Таких как 802.11b и 802.11g, правда их реально мало. Также и при переходе к 802.11ac, будут поддерживаться старые Wi-Fi стандарты и обеспечиваться обратная совместимость.

Пока это все. Если у Вас еще есть вопросы, можете смело написать мне в,

Комитет по стандартам IEEE 802 сформировал рабочую группу по стандартам для беспроводных локальных сетей 802.11 в 1990 году. Эта группа занялась разработкой всеобщего стандарта для радиооборудования и сетей, работающих на частоте 2,4 ГГц, со скоростями доступа 1 и 2 Mbps (Megabits-per-second). Работы по созданию стандарта были завершены через 7 лет, и в июне 1997 года была ратифицирована первая спецификация 802.11. Стандарт IEEE 802.11 являлся первым стандартом для продуктов WLAN от независимой международной организации, разрабатывающей большинство стандартов для проводных сетей. Однако к тому времени заложенная первоначально скорость передачи данных в беспроводной сети уже не удовлетворяла потребностям пользователей. Для того, чтобы сделать технологию Wireless LAN популярной, дешёвой, а главное, удовлетворяющей современным жёстким требованиям бизнес-приложений, разработчики были вынуждены создать новый стандарт.

В сентябре 1999 года IEEE ратифицировал расширение предыдущего стандарта. Названное IEEE 802.11b (также известное, как 802.11 High rate), оно определяет стандарт для продуктов беспроводных сетей, которые работают на скорости 11 Mbps (подобно Ethernet), что позволяет успешно применять эти устройства в крупных организациях. Совместимость продуктов различных производителей гарантируется независимой организацией, которая называется Wireless Ethernet Compatibility Alliance (WECA). Эта организация была создана лидерами индустрии беспроводной связи в 1999 году. В настоящее время членами WECA являются более 80 компаний, в том числе такие известные производители, как , , и пр. С продуктами, удовлетворяющими требованиям Wi-Fi (термин WECA для IEEE 802.11b), можно ознакомиться на сайте .

Потребность в беспроводном доступе к локальным сетям растёт по мере увеличения числа мобильных устройств, таких как ноутбуки и PDA, а так же с ростом желания пользователей быть подключенными к сети без необходимости "втыкать" сетевой провод в свой компьютер. По прогнозам, к 2003 году в мире будет насчитываться более миллиарда мобильных устройств, а стоимость рынка продукции WLAN к 2002 году прогнозируется более чем в 2 миллиарда долларов.

Стандарт IEEE 802.11 и его расширение 802.11b

Как и все стандарты IEEE 802, 802.11 работает на нижних двух уровнях модели ISO/OSI, физическом уровне и канальном уровне (рис. 1). Любое сетевое приложение, сетевая операционная система, или протокол (например, TCP/IP), будут так же хорошо работать в сети 802.11, как и в сети Ethernet.

Рис. 1. Уровни модели ISO/OSI и их соответствие стандарту 802.11.

Основная архитектура, особенности и службы 802.11b определяются в первоначальном стандарте 802.11. Спецификация 802.11b затрагивает только физический уровень, добавляя лишь более высокие скорости доступа.

Режимы работы 802.11

802.11 определяет два типа оборудования — клиент, который обычно представляет собой компьютер, укомплектованный беспроводной сетевой интерфейсной картой (Network Interface Card, NIC), и точку доступа (Access point, AP), которая выполняет роль моста между беспроводной и проводной сетями. Точка доступа обычно содержит в себе приёмопередатчик, интерфейс проводной сети (802.3), а также программное обеспечение, занимающееся обработкой данных. В качестве беспроводной станции может выступать ISA, PCI или PC Card сетевая карта в стандарте 802.11, либо встроенные решения, например, телефонная гарнитура 802.11.

Стандарт IEEE 802.11 определяет два режима работы сети — режим "Ad-hoc" и клиент/сервер (или режим инфраструктуры — infrastructure mode). В режиме клиент/сервер (рис. 2) беспроводная сеть состоит из как минимум одной точки доступа, подключенной к проводной сети, и некоторого набора беспроводных оконечных станций. Такая конфигурация носит название базового набора служб (Basic Service Set, BSS). Два или более BSS, образующих единую подсеть, формируют расширенный набор служб (Extended Service Set, ESS). Так как большинству беспроводных станций требуется получать доступ к файловым серверам, принтерам, Интернет, доступным в проводной локальной сети, они будут работать в режиме клиент/сервер.


Рис. 2. Архитектура сети "клиент/сервер".

Режим "Ad-hoc" (также называемый точка-точка, или независимый базовый набор служб, IBSS) — это простая сеть, в которой связь между многочисленными станциями устанавливается напрямую, без использования специальной точки доступа (рис. 3). Такой режим полезен в том случае, если инфраструктура беспроводной сети не сформирована (например, отель, выставочный зал, аэропорт), либо по каким-то причинам не может быть сформирована.


Рис. 3. Архитектура сети "Ad-hoc".

Физический уровень 802.11

На физическом уровне определены два широкополосных радиочастотных метода передачи и один — в инфракрасном диапазоне. Радиочастотные методы работают в ISM диапазоне 2,4 ГГц и обычно используют полосу 83 МГц от 2,400 ГГц до 2,483 ГГц. Технологии широкополосного сигнала, используемые в радиочастотных методах, увеличивают надёжность, пропускную способность, позволяют многим несвязанным друг с другом устройствам разделять одну полосу частот с минимальными помехами друг для друга.

Стандарт 802.11 использует метод прямой последовательности (Direct Sequence Spread Spectrum, DSSS) и метод частотных скачков (Frequency Hopping Spread Spectrum, FHSS). Эти методы кардинально отличаются, и несовместимы друг с другом.

Для модуляции сигнала FHSS использует технологию Frequency Shift Keying (FSK). При работе на скорости 1 Mbps используется FSK модуляция по Гауссу второго уровня, а при работе на скорости 2 Mbps — четвёртого уровня.

Метод DSSS использует технологию модуляции Phase Shift Keying (PSK). При этом на скорости 1 Mbps используется дифференциальная двоичная PSK, а на скорости 2 Mbps — дифференциальная квадратичная PSK модуляция.

Заголовки физического уровня всегда передаются на скорости 1 Mbps, в то время как данные могут передаваться со скоростями 1 и 2 Mbps.

Метод передачи в инфракрасном диапазоне (IR)

Реализация этого метода в стандарте 802.11 основана на излучении ИК передатчиком ненаправленного (diffuse IR) сигнала. Вместо направленной передачи, требующей соответствующей ориентации излучателя и приёмника, передаваемый ИК сигнал излучается в потолок. Затем происходит отражение сигнала и его приём. Такой метод имеет очевидные преимущества по сравнению с использованием направленных излучателей, однако есть и существенные недостатки — требуется потолок, отражающий ИК излучение в заданном диапазоне длин волн (850 — 950 нм); радиус действия всей системы ограничен 10 метрами. Кроме того, ИК лучи чувствительны к погодным условиям, поэтому метод рекомендуется применять только внутри помещений.

Поддерживаются две скорости передачи данных — 1 и 2 Mbps. На скорости 1 Mbps поток данных разбивается на квартеты, каждый из которых затем во время модуляции кодируется в один из 16-ти импульсов. На скорости 2 Mbps метод модуляции немного отличается — поток данных делится на битовые пары, каждая из которых модулируется в один из четырёх импульсов. Пиковая мощность передаваемого сигнала составляет 2 Вт.

Метод FHSS

При использовании метода частотных скачков полоса 2,4 ГГц делится на 79 каналов по 1 МГц. Отправитель и получатель согласовывают схему переключения каналов (на выбор имеется 22 таких схемы), и данные посылаются последовательно по различным каналам с использованием этой схемы. Каждая передача данных в сети 802.11 происходит по разным схемам переключения, а сами схемы разработаны таким образом, чтобы минимизировать шансы того, что два отправителя будут использовать один и тот же канал одновременно.

Метод FHSS позволяет использовать очень простую схему приёмопередатчика, однако ограничен максимальной скоростью 2 Mbps. Это ограничение вызвано тем, что под один канал выделяется ровно 1 МГц, что вынуждает FHSS системы использовать весь диапазон 2,4 ГГц. Это означает, что должно происходить частое переключение каналов (например, в США установлена минимальная скорость 2,5 переключения в секунду), что, в свою очередь, приводит к увеличению накладных расходов.

Метод DSSS

Метод DSSS делит диапазон 2,4 ГГц на 14 частично перекрывающихся каналов (в США доступно только 11 каналов). Для того, чтобы несколько каналов могли использоваться одновременно в одном и том же месте, необходимо, чтобы они отстояли друг от друга на 25 МГц (не перекрывались), для исключения взаимных помех. Таким образом, в одном месте может одновременно использоваться максимум 3 канала. Данные пересылаются с использованием одного из этих каналов без переключения на другие каналы. Чтобы компенсировать посторонние шумы, используется 11-ти битная последовательность Баркера, когда каждый бит данных пользователя преобразуется в 11 бит передаваемых данных. Такая высокая избыточность для каждого бита позволяет существенно повысить надёжность передачи, при этом значительно снизив мощность передаваемого сигнала. Даже если часть сигнала будет утеряна, он в большинстве случаев всё равно будет восстановлен. Тем самым минимизируется число повторных передач данных.

Изменения, внесённые 802.11b

Основное дополнение, внесённое 802.11b в основной стандарт — это поддержка двух новых скоростей передачи данных — 5,5 и 11 Mbps. Для достижения этих скоростей был выбран метод DSSS, так как метод частотных скачков в силу ограничений FCC не может поддерживать более высокие скорости. Из этого следует, что системы 802.11b будут совместимы с DSSS системами 802.11, но не будут работать с системами FHSS 802.11.

Для поддержки очень зашумлённых сред, а также работы на больших расстояниях, сети 802.11b используют динамический сдвиг скорости, который позволяет автоматически изменять скорость передачи данных в зависимости от свойств радиоканала. Например, пользователь может подключиться с максимальной скоростью 11 Mbps, но в том случае, если повысится уровень помех, или пользователь удалится на большое расстояние, мобильное устройство начнёт передавать на меньшей скорости — 5,5, 2 или 1 Mbps. В том случае, если возможна устойчивая работа на более высокой скорости, мобильное устройство автоматически начнёт передавать с более высокой скоростью. Сдвиг скорости — механизм физического уровня, и является прозрачным для вышестоящих уровней и пользователя.

Канальный (Data Link) уровень 802.11

Канальный уровень 802.11 состоит из двух подуровней: управления логической связью (Logical Link Control, LLC) и управления доступом к носителю (Media Access Control, MAC). 802.11 использует тот же LLC и 48-битовую адресацию, что и другие сети 802, что позволяет легко объединять беспроводные и проводные сети, однако MAC уровень имеет кардинальные отличия.

MAC уровень 802.11 очень похож на реализованный в 802.3, где он поддерживает множество пользователей на общем носителе, когда пользователь проверяет носитель перед доступом к нему. Для Ethernet сетей 802.3 используется протокол Carrier Sence Multiple Access with Collision Detection (CSMA/CD), который определяет, как станции Ethernet получают доступ к проводной линии, и как они обнаруживают и обрабатывают коллизии, возникающие в том случае, если несколько устройств пытаются одновременно установить связь по сети. Чтобы обнаружить коллизию, станция должна обладать способностью и принимать, и передавать одновременно. Стандарт 802.11 предусматривает использование полудуплексных приёмопередатчиков, поэтому в беспроводных сетях 802.11 станция не может обнаружить коллизию во время передачи.

Чтобы учесть это отличие, 802.11 использует модифицированный протокол, известный как Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA), или Distributed Coordination Function (DCF). CSMA/CA пытается избежать коллизий путём использования явного подтверждения пакета (ACK), что означает, что принимающая станция посылает ACK пакет для подтверждения того, что пакет получен неповреждённым.

CSMA/CA работает следующим образом. Станция, желающая передавать, тестирует канал, и если не обнаружено активности, станция ожидает в течение некоторого случайного промежутка времени, а затем передаёт, если среда передачи данных всё ещё свободна. Если пакет приходит целым, принимающая станция посылает пакет ACK, по приёме которого отправителем завершается процесс передачи. Если передающая станция не получила пакет ACK, в силу того, что не был получен пакет данных, или пришёл повреждённый ACK, делается предположение, что произошла коллизия, и пакет данных передаётся снова через случайный промежуток времени.

Для определения того, является ли канал свободным, используется алгоритм оценки чистоты канала (Channel Clearance Algorithm, CCA). Его суть заключается в измерении энергии сигнала на антенне и определения мощности принятого сигнала (RSSI). Если мощность принятого сигнала ниже определённого порога, то канал объявляется свободным, и MAC уровень получает статус CTS. Если мощность выше порогового значения, передача данных задерживается в соответствии с правилами протокола. Стандарт предоставляет ещё одну возможность определения незанятости канала, которая может использоваться либо отдельно, либо вместе с измерением RSSI — метод проверки несущей. Этот метод является более выборочным, так как с его помощью производится проверка на тот же тип несущей, что и по спецификации 802.11. Наилучший метод для использования зависит от того, каков уровень помех в рабочей области.

Таким образом, CSMA/CA предоставляет способ разделения доступа по радиоканалу. Механизм явного подтверждения эффективно решает проблемы помех. Однако он добавляет некоторые дополнительные накладные расходы, которых нет в 802.3, поэтому сети 802.11 будут всегда работать медленнее, чем эквивалентные им Ethernet локальные сети.


Рис. 4. Иллюстрация проблемы "скрытой точки".

Другая специфичная проблема MAC-уровня — это проблема "скрытой точки", когда две станции могут обе "слышать" точку доступа, но не могут "слышать" друг друга, в силу большого расстояния или преград (рис. 4). Для решения этой проблемы в 802.11 на MAC уровне добавлен необязательный протокол Request to Send/Clear to Send (RTS/CTS). Когда используется этот протокол, посылающая станция передаёт RTS и ждёт ответа точки доступа с CTS. Так как все станции в сети могут "слышать" точку доступа, сигнал CTS заставляет их отложить свои передачи, что позволяет передающей станции передать данные и получить ACK пакет без возможности коллизий. Так как RTS/CTS добавляет дополнительные накладные расходы на сеть, временно резервируя носитель, он обычно используется только для пакетов очень большого объёма, для которых повторная передача была бы слишком дорогостоящей.

Наконец, MAC уровень 802.11 предоставляет возможность расчёта CRC и фрагментации пакетов. Каждый пакет имеет свою контрольную сумму CRC, которая рассчитывается и прикрепляется к пакету. Здесь наблюдается отличие от сетей Ethernet, в которых обработкой ошибок занимаются протоколы более высокого уровня (например, TCP). Фрагментация пакетов позволяет разбивать большие пакеты на более маленькие при передаче по радиоканалу, что полезно в очень "заселённых" средах или в тех случаях, когда существуют значительные помехи, так как у меньших пакетов меньше шансы быть повреждёнными. Этот метод в большинстве случаев уменьшает необходимость повторной передачи и, таким образом, увеличивает производительность всей беспроводной сети. MAC уровень ответственен за сборку полученных фрагментов, делая этот процесс "прозрачным" для протоколов более высокого уровня.

Подключение к сети

MAC уровень 802.11 несёт ответственность за то, каким образом клиент подключается к точке доступа. Когда клиент 802.11 попадает в зону действия одной или нескольких точек доступа, он на основе мощности сигнала и наблюдаемого значения количества ошибок выбирает одну из них и подключается к ней. Как только клиент получает подтверждение того, что он принят точкой доступа, он настраивается на радиоканал, в котором она работает. Время от времени он проверяет все каналы 802.11, чтобы посмотреть, не предоставляет ли другая точка доступа службы более высокого качества. Если такая точка доступа находится, то станция подключается к ней, перенастраиваясь на её частоту (рис. 5).


Рис. 5. Подключение к сети и иллюстрация правильного назначения каналов для точек доступа.

Переподключение обычно происходит в том случае, если станция была физически перемещена вдаль от точки доступа, что вызвало ослабление сигнала. В других случаях повторное подключение происходит из-за изменения радиочастотных характеристик здания, или просто из-за большого сетевого трафика через первоначальную точку доступа. В последнем случае эта функция протокола известна как "балансировка нагрузки", так как её главное назначение — распределение общей нагрузки на беспроводную сеть наиболее эффективно по всей доступной инфраструктуре сети.

Процесс динамического подключения и переподключения позволяет сетевым администраторам устанавливать беспроводные сети с очень широким покрытием, создавая частично перекрывающиеся "соты". Идеальным вариантом является такой, при котором соседние перекрывающиеся точки доступа будут использовать разные DSSS каналы, чтобы не создавать помех в работе друг другу (Рис. 5).

Поддержка потоковых данных

Потоковые данные, такие как видео или голос, поддерживаются в спецификации 802.11 на MAC уровне посредством Point Coordination Function (PCF). В противоположность Distributed Coordination Function (DCF), где управление распределено между всеми станциями, в режиме PCF только точка доступа управляет доступом к каналу. В том случае, если установлен BSS с включенной PCF, время равномерно распределяется промежутками для работы в режиме PCF и в режиме CSMA/CA. Во время периодов, когда система находится в режиме PCF, точка доступа опрашивает все станции на предмет получения данных. На каждую станцию выделяется фиксированный промежуток времени, по истечении которого производится опрос следующей станции. Ни одна из станций не может передавать в это время, за исключением той, которая опрашивается. Так как PCF даёт возможность каждой станции передавать в определённое время, то гарантируется максимальная латентность. Недостатком такой схемы является то, что точка доступа должна производить опрос всех станций, что становится чрезвычайно неэффективным в больших сетях.

Управление питанием

Дополнительно по отношению к управлению доступом к носителю, MAC уровень 802.11 поддерживает энергосберегающие режимы для продления срока службы батарей мобильных устройств. Стандарт поддерживает два режима потребления энергии, называемые "режим продолжительной работы" и "сберегающий режим". В первом случае радио всегда находится во включенном состоянии, в то время как во втором случае радио периодически включается через определённые промежутки времени для приёма "маячковых" сигналов, которые постоянно посылает точка доступа. Эти сигналы включают в себя информацию относительно того, какая станция должна принять данные. Таким образом, клиент может принять маячковый сигнал, принять данные, а затем вновь перейти в "спящий" режим.

Безопасность

802.11b обеспечивает контроль доступа на MAC уровне (второй уровень в модели ISO/OSI), и механизмы шифрования, известные как Wired Equivalent Privacy (WEP), целью которых является обеспечение беспроводной сети средствами безопасности, эквивалентными средствам безопасности проводных сетей. Когда включен WEP, он защищает только пакет данных, но не защищает заголовки физического уровня, так что другие станции в сети могут просматривать данные, необходимые для управления сетью. Для контроля доступа в каждую точку доступа помещается так называемый ESSID (или WLAN Service Area ID), без знания которого мобильная станция не сможет подключиться к точке доступа. Дополнительно точка доступа может хранить список разрешённых MAC адресов, называемый списком контроля доступа (Access Control List, ACL), разрешая доступ только тем клиентам, чьи MAC адреса находятся в списке.

Для шифрования данных стандарт предоставляет возможности шифрования с использованием алгоритма RC4 с 40-битным разделяемым ключом. После того, как станция подключается к точке доступа, все передаваемые данные могут быть зашифрованы с использованием этого ключа. Когда используется шифрование, точка доступа будет посылать зашифрованный пакет любой станции, пытающейся подключиться к ней. Клиент должен использовать свой ключ для шифрования корректного ответа для того, чтобы аутентифицировать себя и получить доступ в сеть. Выше второго уровня сети 802.11b поддерживают те же стандарты для контроля доступа и шифрования (например, IPSec), что и другие сети 802.

Безопасность для здоровья

Так как мобильные станции и точки доступа являются СВЧ устройствами, у многих возникают вопросы по поводу безопасности использования компонентов Wave LAN. Известно, что чем выше частота радиоизлучения, тем опаснее оно для человека. В частности, известно, что если посмотреть внутрь прямоугольного волновода, передающего сигнал частотой 10 или более ГГц, мощностью около 2 Вт, то неминуемо произойдёт повреждение сетчатки глаза, даже если продолжительность воздействия составит менее секунды. Антенны мобильных устройств и точек доступа являются источниками высокочастотного излучения, и хотя мощность излучаемого сигнала очень невелика, всё же не следует находиться в непосредственной близости от работающей антенны. Как правило, безопасным расстоянием является расстояние порядка десятков сантиметров от приёмо-передающих частей. Более точное значение можно найти в руководстве к конкретному прибору.

Дальнейшее развитие

В настоящее время разрабатываются два конкурирующих стандарта на беспроводные сети следующего поколения — стандарт IEEE 802.11a и европейский стандарт HIPERLAN-2. Оба стандарта работают во втором ISM диапазоне, использующем полосу частот в районе 5 ГГц. Заявленная скорость передачи данных в сетях нового поколения составляет 54 Mbps.

Производители устройств 802.11b

На сегодняшний день наиболее известными и популярными производителями на рынке WaveLAN решений являются компании Lucent (серия ORiNOCO) и Cisco (серия Aironet). Помимо них существует достаточно большое количество компаний, производящих 802.11b совместимое оборудование. К их числу можно отнести такие компании, как 3Com (серия 3Com AirConnect), Samsung, Compaq, Symbol, Zoom Telephonics и пр. В следующей части статьи мы рассмотрим характеристики серий ORiNOCO компании Lucent и Aironet компании Cisco, а затем произведём тестирование обоих серий.

Ссылки

  • Рабочая группа 802.11
  • — WaveLAN на Украине
  • — Обзоры, тестирование WaveLAN, правовая информация


Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: