Разное. Схемы простых мигалок на тиристорах

Answer

Lorem Ipsum is simply dummy text of the printing and typesetting industry. Lorem Ipsum has been the industry"s standard dummy text ever since the 1500s, when an unknown printer took a galley of type and scrambled it to make a type specimen book. It has survived not only five http://jquery2dotnet.com/ centuries, but also the leap into electronic typesetting, remaining essentially unchanged. It was popularised in the 1960s with the release of Letraset sheets containing Lorem Ipsum passages, and more recently with desktop publishing software like Aldus PageMaker including versions of Lorem Ipsum.

Предлагаю вашему вниманию простейшую мигалку, которую за 5 минут может собрать даже начинающий.

Принцип действия такой: за счет падения напряжение на тиристоре через мощный резистор R1 заряжается конденсатор. Когда напряжение на конденсаторе достигает порогового, которое выставляется переменным резистором R2, открывается тиристор и лампа загорается. Диод V2 необходим для предохранения конденсатора от пробоя. Ну и теперь о деталях - резистор R1 обязательно должен быть мощным - у меня стоит на 2Вт, но все равно греется, поэтому лучше взять на 2,5Вт или даже проволочный ПЭВ (они бывают до 10Вт). Конденсатор нужен высоковольтный, у меня напряжение на его обкладках составляет 50В, но может быть и выше, так что лучше взять с запасом. Тиристор выбирается в зависимости от нагрузки - я успешно использовал КУ202Н, но подойдут также с буквами К,Л и М и еще КУ201И. Диод - не обязательно Д226Б, я использовал Д7Е и КД202Д - оба выдержали ток и не грелись, думаю, что и с зарубежными 1N4001 и 1N4007 тоже ничего не произойдет. Переменный резистор выбирается исходя из отпирающего тока тиристора - подбирается экспериментально от 5К до 47К, мощность любая.

Этот девайс может быть нагружен как на лампу так и на елочную гирлянду. А можно еще доделать еще одно плечо с противоположной полярностью и тогда лампочки будут мигать по очереди.

Одной из самых простых схем в любительской радиоэлектронике является светодиодная мигалка на одном транзисторе. Ее изготовление под силу любому новичку, у которого есть минимальный набор для пайки и полчаса времени.

Рассматриваемая схема хоть и отличается простотой, однако, она позволяет наглядно увидеть лавинный пробой транзистора, а также работу электролитического конденсатора. В том числе, путем подбора емкости можно легко изменять частоту мигания светодиода. Экспериментировать также можно с входным напряжением (в небольших диапазонах), которое тоже влияет на работу изделия.

Устройство и принцип работы

Мигалка состоит из следующих элементов:
  • источник питания;
  • сопротивление;
  • конденсатор;
  • транзистор;
  • светодиод.
Работает схема по очень простому принципу. В первой фазе цикла транзистор «закрыт», то есть не пропускает ток из источника питания. Соответственно, светодиод не светится.
Конденсатор расположен в цепи до закрытого транзистора, потому накапливает электрическую энергию. Происходит это до тех пор, пока напряжение на его выводах не достигнет показателя, достаточного для обеспечения так называемого лавинного пробоя.
Во второй фазе цикла накопленная в конденсаторе энергия «пробивает» транзистор, и ток проходит через светодиод. Он вспыхивает на короткое время, а затем опять гаснет, так как транзистор опять закрывается.
Далее мигалка работает в циклическом режиме и все процессы повторяются.

Необходимые материалы и радиодетали

Чтобы собрать светодиодную мигалку своими руками, работающую от источника питания с напряжением 12 В, понадобится следующее:
  • паяльник;
  • канифоль;
  • припой;
  • резистор на 1 кОм;
  • конденсатор емкостью 470-1000 мкФ на 16 В;
  • транзистор КТ315 или его более современный аналог;
  • классический светодиод;
  • простой провод;
  • источник питания на 12 В;
  • спичечный коробок (необязательно).


Последний компонент выступает в роли корпуса, хотя собрать схему можно и без него. В качестве альтернативы можно использовать монтажную плату. Навесной монтаж, описанный далее, рекомендуется для начинающих радиолюбителей. Такой способ сборки позволяет быстрее сориентироваться в схеме и сделать все правильно с первого раза.

Последовательность сборки мигалки

Изготовление светодиодной мигалки на 12 В осуществляется в следующей последовательности. Первым делом подготавливаются все вышеперечисленные компоненты, материалы и инструменты.
Для удобства светодиод и провода питания лучше сразу закрепить на корпусе. Далее к выводу «+» следует припаять резистор.




Свободная «ножка сопротивления соединяется с эмиттером транзистора. Если КТ315 расположить маркировкой вниз, то этот вывод будет у него крайним правым. Далее эмиттер транзистора соединяется с положительным выводом конденсатора. Определить его можно по маркировке на корпусе – «минус» обозначается светлой полосой.
Следующим этапом идет соединение коллектора транзистора с положительным выводом светодиода. У КТ315 – это ножка посредине. «Плюс» светодиода можно определить визуально. Внутри элемента имеется два электрода, отличающихся размерами. Тот, который поменьше, и будет положительным.



Теперь осталось только припаять отрицательный вывод светодиода к соответствующему проводнику источника питания. К этой же линии подсоединяется «минус» конденсатора.
Светодиодная мигалка на одном транзисторе готова. Подав на нее питание, можно увидеть ее работу по вышеописанному принципу.
Если есть желание уменьшить или увеличить частоту мигания светодиода, то можно поэкспериментировать с конденсаторами, имеющими разную емкость. Принцип очень простой – чем больше емкость элемента, тем реже будет мигать светодиод.

От 220 вольт. Схема может быть применена в качестве индикатора сетевого напряжения.

В схеме мигающего светодиода использован (DIAC). Динистор, как правило, используется в качестве генератора импульсов для управления тиристором или симистором. Когда на динистор подано напряжение ниже напряжения пробоя, то он не пропускает через себя ток (фактически получается обрыв цепи) и только очень незначительный ток проходит через него.

Но если напряжение возрастает до порога пробоя, то это переводит динистор в состояние электропроводности. Для динистора DB3 напряжение пробоя составляет около 35 вольт. Динистор DB3 проводит ток в обоих направлениях. Диод VD1 выпрямляет переменное напряжение сети. Резистор R1 предназначен для ограничения тока протекающего через динистор DB3.

При подаче питания на схему не горит. С1 начинает заряжаться через диод VD1 и резистор R1. Когда конденсатор С1 зарядится до напряжения около 35 вольт, происходит пробой динистора, ток начинает течь через него, в результате чего светодиод загорается. Резистор R2 ограничивает ток через светодиод до безопасного значения 30 мА.

Когда DB3 пропускает через себя ток, в это время конденсатор С1 разряжается, напряжение на нем опускается ниже напряжения пробоя динистора, в результате чего последний закрывается и светодиод гаснет. Затем все повторяется вновь. И как результат — светодиод начинает периодически мигать.

Частота вспышек светодиода определяется емкостью конденсатора С1. Более высокое его значение дает низкую частоту вспышек и наоборот. Если динистор не открывается, то можно уменьшить сопротивление R1 до 10 кОм, но мощность R1 в этом случае должна быть не менее 5 Вт.

Второй вариант мигающего светодиода от 220 вольт . Здесь переменное сетевое напряжение 220 вольт снижается до 50 вольт, за счет гасящего конденсатора C1, и выпрямляется диодным мостом VD1-VD4. Резистор R1 предназначен для защиты конденсатора от пускового тока и разряда его после отключения схемы от сети.

Основным элементом схемы является динистор DB3. Динистор вместе с конденсатором C2 образует релаксационный генератор. При подаче напряжения, конденсатор С2 начинает медленно заряжаться через резистор R3. При достижении на конденсаторе напряжения равного напряжению пробоя динистора (примерно 35В), динистор начинает проводить ток, включая светодиод. Далее происходит разряд конденсатора С2 и динистор закрывается, светодиод гаснет. И цикл повторяется вновь. При указанной емкости конденсатора С2 частота вспышек светодиода составляет примерно 1 раз в секунду.

Внимание : обе схемы напрямую связаны с электросетью 220 вольт и не имеют гальваническую развязку. Будьте крайне осторожны при сборке и эксплуатации данного устройства.

Мигающие светодиоды часто применяют в различных сигнальных цепях. В продаже довольно давно появились светодиоды (LED) различных цветов, которые при подключении к источнику питания периодически мигают. Для их мигания не нужны никакие дополнительные детали. Внутри такого светодиода смонтирована миниатюрная интегральная микросхема, управляющая его работой. Однако для начинающего радиолюбителя намного интереснее сделать мигающий светодиод своими руками, а заодно изучить принцип работы электронной схемы, в частности мигалок, освоить навыки работы с паяльником.

Как сделать светодиодную мигалку своими руками

Существует множество схем, с помощью которых можно заставить мигать светодиод. Мигающие устройства можно изготовить как из отдельных радиодеталей, так и на основе различных микросхем. Сначала мы рассмотрим схему мигалки мультивибратора на двух транзисторах. Для ее сборки подойдут самые ходовые детали. Их можно приобрести в магазине радиодеталей или «добыть» из отживших свой срок телевизоров, радиоприемников и другой радиоаппаратуры. Также во многих интернет магазинах можно купить наборы деталей для сборки подобных схем led мигалок.

На рисунке изображена схема мигалки мультивибратора, состоящая всего из девяти деталей. Для ее сборки потребуются:

  • два резистора по 6.8 – 15 кОм;
  • два резистора имеющие сопротивление 470 – 680 Ом;
  • два маломощных транзистора имеющие структуру n-p-n, например КТ315 Б;
  • два электролитических конденсатора емкостью 47 –100 мкФ
  • один маломощный светодиод любого цвета, например красный.

Не обязательно, чтобы парные детали, например резисторы R2 и R3, имели одинаковую величину. Небольшой разброс номиналов практически не сказывается на работе мультивибратора. Также данная схема мигалки на светодиодах не критична к напряжению питания. Она уверенно работает в диапазоне напряжений от 3 до 12 вольт.

Схема мигалки мультивибратора работает следующим образом. В момент подачи на схему питания, всегда один из транзисторов окажется открытым чуть больше чем другой. Причиной может служить, например, чуть больший коэффициент передачи тока. Пусть первоначально больше открылся транзистор Т2. Тогда через его базу и резистор R1 потечет ток заряда конденсатора С1. Транзистор Т2 будет находиться в открытом состоянии и через R4 будет протекать его ток коллектора. На плюсовой обкладке конденсатора С2, присоединенной к коллектору Т2, будет низкое напряжение и он заряжаться не будет. По мере заряда С1 базовый ток Т2 будет уменьшаться, а напряжение на коллекторе расти. В какой-то момент это напряжение станет таким, что потечет ток заряда конденсатора C2 и транзистор Т3 начнет открываться. С1 начнет разряжаться через транзистор Т3 и резистор R2. Падение напряжения на R2 надежно закроет Т2. В это время через открытый транзистор Т3 и резистор R1 будет течь ток и светодиод LED1 будет светиться. В дальнейшем циклы заряда-разряда конденсаторов будут повторяться попеременно.

Если посмотреть осциллограммы на коллекторах транзисторов, то они будут иметь вид прямоугольных импульсов.

Когда ширина (длительность) прямоугольных импульсов равна расстоянию между ними, тогда говорят, что сигнал имеет форму меандра. Снимая осциллограммы с коллекторов обоих транзисторов одновременно, можно заметить, что они всегда находятся в противофазе. Длительность импульсов и время между их повторениями напрямую зависят от произведений R2C2 и R3C1. Меняя соотношение произведений можно изменять длительность и частоту вспышек светодиода.

Для сборки схемы мигающего светодиода понадобятся паяльник, припой и флюс. В качестве флюса можно использовать канифоль или жидкий флюс для пайки, продающийся в магазинах. Перед сборкой конструкции необходимо тщательно зачистить и залудить выводы радиодеталей. Выводы транзисторов и светодиода нужно соединять в соответствии с их назначением. Также необходимо соблюдать полярность включения электролитических конденсаторов. Маркировка и назначение выводов транзисторов КТ315 показаны на фото.

Мигающий светодиод на одной батарейке

Большинство светодиодов работают при напряжениях свыше 1.5 вольт. Поэтому их нельзя простым способом зажечь от одной пальчиковой батарейки. Однако существуют схемы мигалок на светодиодах позволяющие преодолеть эту трудность. Одна из таких показана ниже.

В схеме мигалки на светодиодах имеется две цепочки заряда конденсаторов: R1C1R2 и R3C2R2. Время заряда конденсатора С1 гораздо больше времени заряда конденсатора С2. После заряда С1 открываются оба транзистора и конденсатор С2 оказывается последовательно соединен с батарейкой. Через транзистор Т2 суммарное напряжение батареи и конденсатора прикладывается к светодиоду. Светодиод загорается. После разряда конденсаторов С1 и С2 транзисторы закрываются и начинается новый цикл зарядки конденсаторов. Такая схема мигалки на светодиодах называется схемой с вольтодобавкой.

Мы рассмотрели несколько схем мигалок на светодиодах. Собирая эти и другие устройства можно не только научиться паять и читать электронные схемы. На выходе можно получить вполне работоспособные приборы полезные в быту. Дело ограничивается только фантазией создателя. Проявив смекалку, из светодиодной мигалки можно, например, сделать сигнализатор открытой дверцы холодильника или указатель поворотов велосипеда. Заставить мигать глазки мягкой игрушки.

МИГАЛКИ НА НЕКОНДИЦИОННЫХ СИМИСТОРАХ КУ208Г К сожалению, среди отечественных симисторов типа КУ208Г встречается много таких экземпляров, которые не способны нормально работать при сетевом напряжении 220 В переменного тока. Обычно некачественные симисторы этого типа имеют повышенный обратный ток в закрытом состоянии, иза которого симистор постепенно разогревается, что приводит его к частичному или почти полному открыванию даже при нулевом токе через управляющий электрод.

Иногда такие симисторы могут самопроизвольно открываться в одном или обоих направлениях даже без разогрева корпуса, например, при повышенном напряжении сети. В фазовых регуляторах яркости ламп накаливания применение таких симисторов может приводить к хаотичным изменениям яркости свечения ламп.

Чтобы некондиционные симисторы типа КУ208Г, которые «не держат» сетевое напряжение, не лежали бесполезным балластом, их всё же можно применить для работы в сети переменного тока 220 В, если использовать встречно-последовательное включение . В таком случае максимальная амплитуда сетевого напряжения на закрытом симисторе будет около 155 В при сетевом напряжении 220 В, что вдвое меньше, если силовой ключ реализован только на одном симисторе.

На рис. 1 представлена принципиальная схема простой «мигалки», работающей с осветительной лампой накаливания. В качестве генератора импульсов применён мигающий светодиод HL1. Когда этот светодиод загорается, протекающий через него ток резко увеличивается, что приводит к открыванию высоковольтных транзисторов VT1, VT2, включенных по схеме составного транзистора Дарлингтона. Когда эти транзисторы открыты, через управляющие электроды симисторов VS1, VS2 протекает переменный ток, достаточный для их синхронного открывания - лампа накаливания EL1 вспыхивает.

В то время, пока лампа накаливания не светится, напряжение на выходе диодного выпрямительного моста VD3 максимально, конденсатор С1 заряжается через токоограничительные резисторы R4, R5. Стабилитрон VD1 ограничивает рост напряжения на накопительном конденсаторе С1 до 9 В. Резистор R1 ограничивает ток через мигающий светодиод. Диод VD2 предотвращает разряд конденсатора С1 через резисторы R4, R5 при открытых транзисторах VT1, VT2. Резисторы R2, R3 необходимы для надёжного закрывания высоковольтных транзисторов. Резистор R6 ограничивает импульсный ток через высоковольтные транзисторы, мостовой выпрямитель и управляющие электроды симисторов.

Резисторы R9, R10 распределяют поровну приложенное сетевое напряжение на анодах закрытых симисторов.

Другой вариант мигалки можно изготовить по схеме рис. 2. Здесь вместо узла на мигающем светодиоде применён узел релаксационного генератора на неоновой индикаторной лампе. Конденсатор С1 заряжается через токоограничительный резистор R4.

Когда напряжение на обкладках этого конденсатора достигнет напряжения зажигания неоновой лампы, она вспыхнет, протекающий через светящуюся неоновую лампу и резистор R1 ток откроет транзисторы VT1, VT2, что приведёт к открыванию обоих симисторов, лампа накаливания EL1 загорится. Частота вспышек ламп зависит от типа «неонки», ёмкости конденсатора С1 и сопротивления резистора R4. Длительность вспышек можно изменить подбором сопротивления резистора R1 в диапазоне 6,8...30 кОм. При указанных на схеме номиналах времязадающих элементов лампы вспыхи



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: