Может ли двух ядерный комп выполнять многозадачность. Простое объяснение вопроса «что такое процессор». Увеличение производительности за счёт многоядерности

Многоядерные процессоры представляют собой центральные процессоры, в которых содержится более двух вычислительных ядер. Такие ядра могут находиться как в одном корпусе, так и на одном процессорном кристалле.

Что такое многоядерный процессор?

Чаще всего под многоядерными процессорами понимают центральные процессоры, в которых несколько вычислительных ядер интегрированы в одну микросхему (то есть они расположены на одном кристалле кремния).

Обычно тактовая частота в многоядерных процессорах намеренно занижается. Это делают для того, чтобы сократить энергопотребление, сохранив при этом требуемую производительность процессора. Каждое ядро при этом представляет собой полноценный микропроцессор, для которого характерны черты всех современных процессоров - он использует многоуровневый кэш, поддерживает внеочередное исполнение кода и векторные команды.

Hyper-threading

Ядра в многоядерных процессорах могут поддерживать технологию SMT, позволяющую исполнять несколько потоков вычислений и создавать на основе каждого ядра несколько логических процессоров. На процессорах, которые выпускает компания Intel, такая технология называется «Hyper-threading». Благодаря ей можно удваивать число логических процессоров по сравнению с числом физических чипов. В микропроцессорах, поддерживающих эту технологию, каждый физический процессор способен сохранять состояние двух потоков одновременно. Для операционной системы это будет выглядеть, как наличие двух логических процессоров. Если в работе одного из них возникает пауза (например, он ждет получения данных из памяти), другой логический процессор приступает к выполнению собственного потока.

Виды многоядерных процессоров

Многоядерные процессоры подразделяются на несколько видов. Они могут поддерживать использование общей кэш-памяти, а могут не поддерживать. Связь между ядрами реализуется на принципах использования разделяемой шины, сети на каналах точка-точка, сети с коммутатором или использования общего кэша.

Принцип работы

Большинство современных многоядерных процессоров работает по следующей схеме. Если запущенное приложение поддерживает многопоточность, оно может заставлять процессор выполнять несколько заданий одновременно. Например, если в компьютере используется 4-ядерный процессор с тактовой частотой 1.8 ГГц, программа может «загрузить» работой сразу все четыре ядра, при этом суммарная частота процессора будет составлять 7.2 ГГц. Если запущено сразу несколько программ, каждая из них может использовать часть ядер процессора, что тоже приводит к росту производительности компьютера.

Многие операционные системы поддерживают многопоточность, поэтому использование многоядерных процессоров позволяет ускорить работу компьютера даже в случае приложений, которые многопоточность не поддерживают. Если рассматривать работу только одного приложения, то использование многоядерных процессоров будет оправданным лишь в том случае, если это приложение оптимизировано под многопоточность. В противном случае, скорость работы многоядерного процессора не будет отличаться от скорости работы обычного процессора, а иногда он будет работать даже медленнее.

Наверное, каждый пользователь мало знакомый с компьютером сталкивался с кучей непонятных ему характеристик при выборе центрального процессора: техпроцесс, кэш, сокет; обращался за советом к друзьям и знакомым, компетентным в вопросе компьютерного железа. Давайте разберемся в многообразии всевозможных параметров, потому как процессор – это важнейшая часть вашего ПК, а понимание его характеристик подарит вам уверенность при покупке и дальнейшем использовании.

Центральный процессор

Процессор персонального компьютера представляет собой микросхему, которая отвечает за выполнение любых операций с данными и управляет периферийными устройствами. Он содержится в специальном кремниевом корпусе, называемом кристаллом. Для краткого обозначения используют аббревиатуру — ЦП (центральный процессор) или CPU (от англ. Central Processing Unit – центральное обрабатывающее устройство). На современном рынке компьютерных комплектующих присутствуют две конкурирующие корпорации, Intel и AMD , которые беспрестанно участвуют в гонке за производительность новых процессоров, постоянно совершенствуя технологический процесс.

Техпроцесс

Техпроцесс — это размер, используемый при производстве процессоров. Он определяет величину транзистора, единицей измерения которого является нм (нанометр). Транзисторы, в свою очередь, составляют внутреннюю основу ЦП. Суть заключается в том, что постоянное совершенствование методики изготовления позволяет уменьшать размер этих компонентов. В результате на кристалле процессора их размещается гораздо больше. Это способствует улучшению характеристик CPU, поэтому в его параметрах всегда указывают используемый техпроцесс. Например, Intel Core i5-760 выполнен по техпроцессу 45 нм, а Intel Core i5-2500K по 32 нм, исходя из этой информации, можно судить о том, насколько процессор современен и превосходит по производительности своего предшественника, но при выборе необходимо учитывать и ряд других параметров.

Архитектура

Также процессорам свойственно такая характеристика, как архитектура - набор свойств, присущий целому семейству процессоров, как правило, выпускаемому в течение многих лет. Говоря другими словами, архитектура – это их организация или внутренняя конструкция ЦП.

Количество ядер

Ядро – самый главный элемент центрального процессора. Оно представляет собой часть процессора, способное выполнять один поток команд. Ядра отличаются по размеру кэш памяти, частоте шины, технологии изготовления и т. д. Производители с каждым последующим техпроцессом присваивают им новые имена (к примеру, ядро процессора AMD – Zambezi, а Intel – Lynnfield). С развитием технологий производства процессоров появилась возможность размещать в одном корпусе более одного ядра, что значительно увеличивает производительность CPU и помогает выполнять несколько задач одновременно, а также использовать несколько ядер в работе программ. Многоядерные процессоры смогут быстрее справиться с архивацией, декодированием видео, работой современных видеоигр и т.д. Например, линейки процессоров Core 2 Duo и Core 2 Quad от Intel, в которых используются двухъядерные и четырехъядерные ЦП, соответственно. На данный момент массово доступны процессоры с 2, 3, 4 и 6 ядрами. Их большее количество используется в серверных решениях и не требуется рядовому пользователю ПК.

Частота

Помимо количества ядер на производительность влияет тактовая частота . Значение этой характеристики отражает производительность CPU в количестве тактов (операций) в секунду. Еще одной немаловажной характеристикой является частота шины (FSB – Front Side Bus) демонстрирующая скорость, с которой происходит обмен данных между процессором и периферией компьютера. Тактовая частота пропорциональна частоте шины.

Сокет

Чтобы будущий процессор при апгрейде был совместим с имеющейся материнской платой, необходимо знать его сокет. Сокетом называют разъем , в который устанавливается ЦП на материнскую плату компьютера. Тип сокета характеризуется количеством ножек и производителем процессора. Различные сокеты соответствуют определенным типам CPU, таким образом, каждый разъём допускает установку процессора определённого типа. Компания Intel использует сокет LGA1156, LGA1366 и LGA1155, а AMD — AM2+ и AM3.

Кэш

Кэш - объем памяти с очень большой скоростью доступа, необходимый для ускорения обращения к данным, постоянно находящимся в памяти с меньшей скоростью доступа (оперативной памяти). При выборе процессора, помните, что увеличение размера кэш-памяти положительно влияет на производительность большинства приложений. Кэш центрального процессора различается тремя уровнями (L1, L2 и L3 ), располагаясь непосредственно на ядре процессора. В него попадают данные из оперативной памяти для более высокой скорости обработки. Стоит также учесть, что для многоядерных CPU указывается объем кэш-памяти первого уровня для одного ядра. Кэш второго уровня выполняет аналогичные функции, отличаясь более низкой скоростью и большим объемом. Если вы предполагаете использовать процессор для ресурсоемких задач, то модель с большим объемом кэша второго уровня будет предпочтительнее, учитывая что для многоядерных процессоров указывается суммарный объем кэша L2. Кэшем L3 комплектуются самые производительные процессоры, такие как AMD Phenom, AMD Phenom II, Intel Core i3, Intel Core i5, Intel Core i7, Intel Xeon. Кэш третьего уровня наименее быстродействующий, но он может достигать 30 Мб.

Энергопотребление

Энергопотребление процессора тесно связано с технологией его производства. С уменьшением нанометров техпроцесса, увеличением количества транзисторов и повышением тактовой частоты процессоров происходит рост потребления электроэнергии CPU. Например, процессоры линейки Core i7 от Intel требуют до 130 и более ватт. Напряжение подающееся на ядро ярко характеризует энергопотребление процессора. Этот параметр особенно важен при выборе ЦП для использования в качестве мультимедиа центра. В современных моделях процессоров используются различные технологии, которые помогают бороться с излишним энергопотреблением: встраиваемые температурные датчики, системы автоматического контроля напряжения и частоты ядер процессора, энергосберегающие режимы при слабой нагрузке на ЦП.

Дополнительные возможности

Современные процессоры приобрели возможности работы в 2-х и 3-х канальных режимах с оперативной памятью, что значительно сказывается на ее производительности, а также поддерживают больший набор инструкций, поднимающий их функциональность на новый уровень. Графические процессоры обрабатывают видео своими силами, тем самым разгружая ЦП, благодаря технологии DXVA (от англ. DirectX Video Acceleration – ускорение видео компонентом DirectX). Компания Intel использует вышеупомянутую технологию Turbo Boost для динамического изменения тактовой частоты центрального процессора. Технология Speed Step управляет энергопотреблением CPU в зависимости от активности процессора, а Intel Virtualization Technology аппаратно создает виртуальную среду для использования нескольких операционных систем. Также современные процессоры могут делиться на виртуальные ядра с помощью технологии Hyper Threading . Например, двухъядерный процессор способен делить тактовую частоту одного ядра на два, что способствует высокой производительности обработки данных с помощью четырех виртуальных ядер.

Размышляя о конфигурации вашего будущего ПК, не забывайте про видеокарту и ее GPU (от англ. Graphics Processing Unit – графическое обрабатывающее устройство) – процессор вашей видеокарты, который отвечает за рендеринг (арифметические операции с геометрическими, физическими объектами и т.п.). Чем больше частота его ядра и частота памяти, тем меньше будет нагрузки на центральный процессор. Особенное внимание к графическому процессору должны проявить геймеры.

В чем различия между четырехъядерными и восьмиядерными процессорами смартфонов? Объяснение достаточно простое. В восьмиядерных чипах в два раза больше процессорных ядер, чем в четырехъядерных. На первый взгляд восьмиядерный процессор представляется вдвое более мощным, не так ли? На самом деле ничего подобного не происходит. Чтобы понять, почему восьмиядерность процессора не удваивает производительность смартфона вдвое, потребуются некоторые пояснения. уже наступило. Восьмиядерные процессоры, о которых совсем недавно можно было только мечтать, получают все большее распространение. Но, оказывается, их задача состоит не в том, чтобы повысить производительность устройства.

Четырех- и восьмиядерные процессоры. Производительность

Сами термины «восьмиядерный» и « четырехъядерный» отражают число ядер центрального процессора.

Но ключевое различие между этими двумя типами процессоров — по крайней мере по состоянию на 2015 год — состоит в способе установки процессорных ядер.

В четырехъядерном процессоре все ядра способны работать одновременно, обеспечивая быструю и гибкую многозадачность, делая более ровными 3D-игры и повышая скорость работы камеры, а также осуществляя другие задачи.

Современные восьмиядерные чипы, в свою очередь, просто состоят из двух четырехъядерных процессоров, которые распределяют между собой различные задачи в зависимости от их типа. Чаще всего в восьмиядерном чипе присутствует набор из четырех ядер с более низкой тактовой частотой, чем во втором наборе. Когда требуется выполнить сложную задачу, за нее, разумеется, берется более быстрый процессор.


Более точным термином, чем «восьмиядерный» стал бы «двойной четырехъядерный». Но это звучит не так красиво и не подходит для маркетинговых задач. Поэтому эти процессоры называют восьмиядерными.

Зачем нужны два набора процессорных ядер?

В чем причина сочетания двух наборов процессорных ядер, передающих задачи один другому, в одном устройстве? Для обеспечения энергоэффективности.

Более мощный центральный процессор потребляет больше энергии и батарею приходится чаще заряжать. А аккумуляторные батареи намного более слабое звено смартфона, чем процессоры. В результате — чем более мощен процессор смартфона, тем более емкая батарея ему нужна.

При этом для большинства задач смартфона вам не понадобится столь высокая вычислительная производительность, какую может обеспечить современный процессор. Перемещение между домашними экранами, проверка сообщений и даже веб-навигация — не столь требовательные к ресурсам процессора задачи.

Но HD-видео, игры и работа с фотографиями такими задачами являются. Поэтому восьмиядерные процессоры достаточно практичны, хотя элегантным это решение назвать трудно. Более слабый процессор обрабатывает менее ресурсоемкие задачи. Более мощный — более ресурсоемкие. В итоге сокращается общее энергопотребление по сравнению с той ситуацией, когда обработкой всех задач занимался бы только процессор с высокой тактовой частотой. Таким образом, сдвоенный процессор прежде всего решает задачу повышения энергоэффективности, а не производительности.

Технологические особенности

Все современные восьмиядерные процессоры базируются на архитектуре ARM, так называемой big.LITTLE.

Эта восьмиядерная архитектура big.LITTLE была анонсирована в октябре 2011 года и позволила четырем низкопроизводительным ядрам Cortex-A7 работать совместно с четырьмя высокопроизводительными ядрами Cortex-A15. ARM с тех пор ежегодно повторяла этот подход, предлагая более способные чипы для обоих наборов процессорных ядер восьмиядерного чипа.

Некоторые из основных производителей чипов для мобильных устройств сосредоточили свои усилия на этом образце «восьмиядерности» big.LITTLE. Одним из первых и наиболее примечательных стал собственный чип компании Samsung, известный Exynos. Его восьмиядерная модель использовалась начиная с Samsung Galaxy S4, по крайней мере в некоторых версиях устройств компании.

Сравнительно недавно Qualcomm также начала применение big.LITTLE в своих восьмиядерных чипах Snapdragon 810 CPU. Именно на этом процессоре базируются такие известные новинки рынка смартфонов, как и G Flex 2, ставший компании LG.

В начале 2015 года NVIDIA представила Tegra X1, новый суперпроизводительный мобильный процессор, который компания предназначает для автомобильных компьютеров. Основной функцией X1 является его вызываемый консольно («console-challenging») графический процессор, который также основывается на архитектуре big.LITTLE. То есть он также станет восьмиядерным.

Велика ли разница для обычного пользователя?

Велика ли разница между четырех- и восьмиядерным процессором смартфона для обычного пользователя? Нет, на самом деле она очень мала, считает Йон Манди.

Термин «восьмиядерный» вносит некоторую неясность, но на самом деле он означает дублирование четырехъядерных процессоров. В итоге получаются два работающих независимо четырехъядерных набора, объединенных одним чипом для повышения энергоэффективности.

Нужен ли восьмиядерный процессор в каждом современном смартфоне. Такой необходимости нет, полагает Йон Манди и приводит пример Apple, обеспечивающих достойную энергоэффективность своих iPhone при всего двухъядерном процессоре.

Таким образом, восьмиядерная архитектура ARM big.LITTLE является одним из возможных решений одной из самых важных задач, касающихся смартфонов — времени работы от одной зарядки батареи. По мнению Йона Манди, как только найдется другое решение этой задачи, так и прекратится тренд установки в одном чипе двух четырехъядерных наборов, и подобные решения .

Знаете ли вы другие преимущества восьмиядерных процессоров смартфонов?

Обнаружили неприятную проблему предела тактовой частоты. Достигнув порога в 3 ГГц, разработчики столкнулись с значительным ростом энергопотребления и тепловыделения своих продуктов. Уровень технологий 2004 года не позволял существенно уменьшить размеры транзисторов в кремниевом кристалле и выходом из сложившейся ситуации стала попытка не наращивать частоты, а увеличить количество операций, выполняемых за один такт. Переняв опыт серверных платформ, где многопроцессорная компоновка уже была испытана, было решено объединить два процессора на одном кристалле.

С тех пор прошло немало времени, в широком доступе появились ЦП с двумя, тремя, четырьмя, шестью и даже восемью ядрами. Но основную долю на рынке до сих пор занимают 2 и 4-ядерные модели. Изменить ситуацию пытаются в AMD, но их архитектура Bulldozer не оправдала надежд и бюджетные восьмиядерники все еще не очень популярны в мире. Поэтому вопрос, что лучше: 2 или 4-ядерный процессор , до сих пор остается актуальным.

Разница между 2 и 4-ядерным процессором

На аппаратном уровне основное отличие 2-ядерного процессора от 4-ядерного – количество функциональных блоков. Каждое ядро, по сути, представляет собой отдельный ЦП, оснащенный своими вычислительными узлами. 2 или 4 таких ЦП объединены между собой внутренней скоростной шиной и общим контроллером памяти для взаимодействия с ОЗУ. Другие функциональные узлы тоже могут быть общими: у большинства современных ЦП индивидуальной является кэш-память первого (L1) и второго (L2) уровня, блоки целочисленных вычислений и операций с плавающей запятой. Кэш L3, отличающийся относительно большим объемом, один и доступен всем ядрам. Отдельно можно отметить уже упомянутые AMD FX (а также ЦП Athlon и APU серии A): у них общими являются не только кэш-память и контроллер, но и блоки вычислений с плавающей запятой: каждый такой модуль одновременно принадлежит двум ядрам.

Схема четырехъядерного процессора AMD Athlon

С пользовательской точки зрения разница между 2 и 4-ядерным процессором заключается в количестве задач, которые ЦП может обработать за один такт. При одинаковой архитектуре, теоретическая разница будет составлять 2 раза для 2 и 4 ядер или 4 раза для 2 и 8 ядер, соответственно. Таким образом, при одновременной работе нескольких процессов, увеличение количества должно повлечь за собой рост быстродействия системы. Ведь вместо 2 операций четырехъядерный ЦП за один момент времени сможет выполнять сразу четыре.

Чем обусловлена популярность двухъядерных ЦП

Казалось бы, если увеличение числа ядер влечет за собой рост производительности, то на фоне моделей с четырьмя, шестью или восемью ядрами у двухядерников нет никаких шансов. Тем не менее, мировой лидер на рынке ЦП, компания Intel, ежегодно обновляет ассортимент своей продукции и выпускает новые модели всего с парой ядер (Core i3, Celeron, Pentium). И это на фоне того, что даже в смартфонах и планшетах на такие ЦП пользователи смотрят с недоверием или презрением. Чтобы понять, почему самые популярные модели – именно процессоры с двумя ядрами, следует учесть несколько основных факторов.

Intel Core i3 — самые популярные 2-ядерные процессоры для домашнего ПК

Проблема совместимости . При создании программного обеспечения разработчики стремятся сделать так, чтобы оно могло функционировать как на новых компьютерах, так и уже существующих моделях ЦП и ГП. Учитывая ассортимент на рынке, важно обеспечить, чтобы игра нормально работала и на двух ядрах, и на восьми. Большинство всех существующих домашних ПК оснащены двухъядерным процессором, поэтому поддержке таких компьютеров уделяется больше всего внимания.

Сложность распараллеливания задач . Чтобы обеспечить эффективное задействование всех ядер, вычисления, производимые в процессе работы программы, следует разделить на равные потоки. Например, задача, которая может оптимально задействовать все ядра, выделив каждому из них по одному или два процесса — одновременная компрессия нескольких видеороликов. С играми – сложнее, так как все выполняемые в них операции взаимосвязаны. Несмотря на то, что основную работу выполняет графический процессор видеокарты, информацию для формирования 3d-картинки подготавливает именно ЦП. Сделать так, чтобы каждое ядро обрабатывало свою порцию данных, а затем подавало ее ГП синхронно с другими, достаточно сложно. Чем больше одновременных потоков вычислений нужно обрабатывать – тем тяжелее реализация задачи.

Преемственность технологий . Разработчики программного обеспечения используют для своих новых проектов уже существующие наработки, подвергающиеся неоднократной модернизации. В отдельных случаях доходит до того, что такие технологии уходят корнями в прошлое на 10-15 лет. Разработка, основанная на проекте десятилетней давности, кардинальной переработке для идеальной оптимизации поддается очень неохотно, если не совсем никак. Как следствие, наблюдается неспособность софта рационально использовать аппаратные возможности ПК. Игра S.T.A.L.K.E.R. Зов Припяти, вышедшая в 2009 году (в эпоху расцвета многоядерных ЦП) построена на движке 2001 года, поэтому не умеет нагружать более, чем одно ядро.

S.T.A.L.K.E.R. полноценно задействует только одно ядоро 4-ядерного ЦП

Такая же ситуация и с популярной онлайн-РПГ World of Tanks: движок Big World, на котором она базируется, создан в 2005 году, когда многоядерные ЦП еще не воспринимались, как единственно возможный путь развития.

World of Tanks тоже не умеет распределять нагрузку на ядра равномерно

Финансовые сложности . Следствием этой проблемы является предыдущий пункт. Если создавать каждое приложение с нуля, не используя имеющиеся технологии, его реализация обойдется в баснословные суммы. К примеру, стоимость разработки GTA V составила более 200 млн долларов. При этом, некоторые технологии все равно не были созданы «из чистого листа», а позаимствованы из предыдущих проектов, так как игра писалась под 5 платформ сразу (Sony PS3, PS4, Xbox 360 и One, а также ПК).

GTA V оптимизирована под многоядерность и умеет равномерно загружать процессор

Все эти нюансы не позволяют в полной мере использовать потенциал многоядерных процессоров на практике. Взаимозависимость производителей аппаратного обеспечения и разработчиков софта порождает замкнутый круг.

Какой процессор лучше: 2 или 4-ядерный

Очевидно, что при всех преимуществах потенциал многоядерных процессоров до сих пор остается нереализованным до конца. Некоторые задачи вообще не умеют равномерно распределять нагрузку и работают в один поток, другие – делают это с посредственной эффективностью, и лишь малая доля ПО полноценно взаимодействуют со всеми ядрами. Поэтому вопрос, какой лучше процессор, 2 или 4 ядра , купить, требует внимательного изучения текущей ситуации.

На рынке представлены продукты двух производителей: Intel и AMD, отличающиеся особенностями реализации. Advanced Micro Devices традиционно делают упор на многоядерность, в то время как «Интел» неохотно идут на такой шаг и наращивают количество ядер только если это не приводит к снижению удельной производительности в расчете на ядро (избежать которого очень сложно).

Увеличение количества ядер снижает итоговую производительность каждого из них

Как правило, общая теоретическая и практическая производительность многоядерного ЦП ниже, чем аналогичного (построенного на такой же микроархитектуре, с тем же техпроцессорм) с одним ядром. Вызвано это тем, что ядра используют общие ресурсы, и это не лучшим образом сказывается на быстродействии. Таким образом, нельзя просто приобрести мощный четырех- или шестиъядерный процессор с расчетом на то, что он точно не будет слабее двухъядерника из той же серии. В некоторых ситуациях – будет, при том ощутимо. В качестве примера можно привести запуск старых игр на компьютере с восьмиядерным процессором AMD FX : FPS при этом порой ниже, чем на аналогичном ПК, но с четырехъядерным ЦП.

Нужна ли сегодня многоядерность

Значит ли это, что много ядер не нужно? Несмотря на то, что вывод кажется закономерным — нет. Легкие повседневные задачи (такие как веб-серфинг или работа с несколькими программами одновременно) положительно реагируют на увеличение числа ядер процессора. Именно по этой причине производители смартфонов делают упор на количество, опуская на второй план удельную производительность. Opera (и другие браузеры на движке Chromium), Firefox запускают каждую открытую вкладку в виде отдельного процесса, соответственно, чем больше ядер – тем быстрее переход между вкладками. Файловые менеджеры, офисные программы, проигрыватели – сами по себе не являются ресурсоемкими. Но при потребности часто переключаться между ними многоядерный процессор позволит повысить производительность системы.

Браузер Opera каждой вкладке присваивает отдельный процесс

В компании Intel осознают это, потому технология HuperThreading, позволяющая ядру обрабатывать второй поток силами неиспользуемых ресурсов, появилась еще во времена Pentium 4. Но она не позволяет в полной мере компенсировать недостаток производительности.

В «Диспетчере задач» 2-ядерный процессор с Huper Threading отображается, как 4-ядерный

Создатели игр, тем временем, постепенно наверстывают упущенное. Появление новых поколений консолей Sony Play Station и Microsoft Xbox простимулировало разработчиков уделять больше внимания многоядерности. Обе приставки созданы на базе восьмиядерных чипов AMD, поэтому теперь программистам не нужно тратить уйму сил на оптимизацию при портировании игры на ПК. С ростом популярности этих консолей — с облегчением смогли вздохнуть и те, кто разочаровался в приобретении AMD FX 8xxx. Многоядерники усиленно отвоевывают позиции на рынке, о чем можно убедиться на примере обзоров.

В чем преимущество двухъядерных процессоров?

При покупке ноутбука вы наверняка заметили, что на некоторых из них есть ярлыки: "Intel Core 2 Duo " или "AMD Turion 64 x2". Эти ярлыки указывают на то, что ноутбуки созданы на основе двухъядерной технологии обработки данных.

Двухъядерные процессоры

Двухъядерные процессоры относятся к типу систем, состоящих из двух независимых процессорных ядер, объединенных в одной интегральной схеме (ИС) или, как говорят профессионалы, в единый кристалл. Такие системы совмещают два ядра в одном процессоре. Аналогичная технология впервые была применена к персональному компьютеру и к домашней игровой консоли, но очень скоро ее приспособили к мобильной компьютерной среде. Ноутбуки с подобной технологией есть у компаний AMD и Intel.

Двухъядерные процессоры имеют другую структуру, в отличие от сдвоенных одноядерных. Они относятся к системе, где два процессора объединены в одной интегральной схеме. А сдвоенные одноядерные процессоры, в свою очередь, относятся к системе, где два независимых процессора (у каждого имеется собственная матрица) напрямую подключены к материнской плате.

Каждый из процессоров в двухъядерной системе имеет встроенную кэш-память (первичная кэш-память), что дает им собственный потенциал для быстрого и эффективного восстановления и обработки часто используемых команд. Кроме этого, на той же интегральной схеме находится кэш-память второго уровня. Вторичная кэш-память на чипсете Intel"s Mobile Core 2 Duo делится между собой двумя процессорами. В чипсете Turion AMD 64x2 каждый из двух процессоров имеет выделенную кэш-память - по 512 КБ на каждое ядро. Кэш-память второго уровня - это резерв на случай, если первичной окажется недостаточно.

Преимущества двухъядерной технологии

Самые важные преимущества подобных процессоров - скорость и эффективность. Обработка команд и поиск данных осуществляются двумя процессорами; таким образом, достигается большая производительность без нагревания процессоров. То, что эти два процессора имеют свою собственную легко доступную первичную кэш-память, также гарантирует быструю работоспособность. Кроме того, особенно в случае с Intel Core 2 Duo, где вторичный кэш разделен, вся вторичная кэш-память может быть использована или одним, или обоими процессорами одновременно, если в этом возникнет необходимость.

В двух словах, ноутбук, имеющий двухъядерный процессор, быстрее работает и меньше нагревается и при этом имеет улучшенный многозадачный режим. Двухъядерные процессоры потребляют меньше электроэнергии, чем сдвоенные одноядерные.

Еще одно преимущество использования двухъядерных процессоров в ноутбуках – меньший вес и размер, что делает портативный компьютер более удобным, одновременно обеспечивая производительность, как у ПК.

Важно отметить, что при использовании старых программ, если будете запускать лишь одну программу одновременно, вы не почувствуете никаких преимуществ от двухъядерных процессоров. Старые программы не были разработаны для подобной технологии, таким образом, они в состоянии использовать лишь одно ядро. Однако в этом случае все равно остается преимущество многозадачного режима. Если вы одновременно открываете несколько программ, то процессор с двумя ядрами обеспечит более быструю производительность, чем одноядерный.

Время идет, и все больше разработчиков программного обеспечения создают свои программы с учетом двухъядерных процессоров; таким образом, пользователи в ближайшем будущем смогут ощутить все преимущества подобных процессоров.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: