История компьютерной графики в россии. История развития компьютерной графики История развития компьютерной графики

Научная графика

Первые компьютеры использовались лишь для решения научных и производственных задач. Чтобы лучше понять или представить полученные результаты, производили их графическую обработку (строили графики, диаграммы, чертежи рассчитанных конструкций). Первые графики на машине получали в режиме символьной печати.

Деловая графика

Деловая графика - область компьютерной графики, предназначенная для наглядного представления различных показателей работы учреждений. Плановые показатели, отчетная документация, статистические сводки - вот объекты, для которых с помощью деловой графики создаются иллюстративные материалы. Программные средства деловой графики включаются в состав электронных таблиц.

Конструкторская графика

Используется в работе инженеров-конструкторов, архитекторов, изобретателей новой техники. Этот вид компьютерной графики является обязательным элементом САПР (систем автоматизации проектирования). Средствами конструкторской графики можно получать как плоские изображения (проекции, сечения), так и пространственные трехмерные изображения. Этот вид компьютерной графики является обязательным элементом САПР.

Иллюстративная графика

Произвольное рисование и черчение с помощью компьютера. Пакеты иллюстративной графики относятся к прикладному программному обеспечению общего назначения. Простейшие программные средства иллюстративной графики называются графическими редакторами.

Стала популярной во многом благодаря телевидению. С помощью компьютера создаются рекламные ролики, мультфильмы, компьютерные игры, видеоуроки, видеопрезентации и т.д. Графические пакеты для этих целей требуют больших ресурсов компьютера по быстродействию и памяти. Отличительной особенностью этих графических пакетов является возможность создания реалистических изображений и "движущихся картинок".

Получение рисунков трехмерных объектов, их повороты, приближения, удаления, деформации связано с большим объемом вычислений. Передача освещенности объекта в зависимости от положения источника света, от расположения теней, от фактуры поверхности, требует расчетов, учитывающих законы оптики.

Компьютерная анимация

Получение движущегося изображения на экране дисплея. Есть много программных продуктов, в которых художник создает на экране рисунки начального и конечного положения движущихся объектов, все промежуточные состояния рассчитывает и изображает компьютер, выполняя расчеты, опирающиеся на математическое описание данного вида движения. Полученные рисунки, выводимые последовательно на экран с определенной частотой, создают иллюзию движения.

Мультимедиа - это объединение высококачественного изображения на экране монитора со звуковым сопровождением. Наибольшее распространение системы мультимедиа получили в области обучения, рекламы, кино, развлечений и т.д.

Графика для Интернета

Появление глобальной сети Интернет привело к тому, что компьютерная графика стала неотъемлемой частью в ней. Все больше совершенствуются способы передачи визуальной информации, разрабатываются более совершенные графические форматы, ощутимо желание использовать трехмерную графику, анимацию, весь спектр мультимедиа.

История развития компьютерной графики

Исторически первыми интерактивными системами считаются системы автоматизированного проектирования (САПР) . Пример: AutoCAD, КОМПАС и т.п.
Сейчас становятся все более популярными геоинформационные системы (ГИС) . Это относительно новая для массовых пользователей разновидность систем интерактивной компьютерной графики.
Типичными для любой ГИС являются такие операции - ввод и редактирование объектов с учетом их расположения на поверхности Земли, формирование разнообразных цифровых моделей, запись в базы данных, выполнение разнообразных запросов к базам данных. Важной операцией является анализ с учетом пространственных, топологических отношений множества объектов, расположенных на некоторой территории.

Виды компьютерной графики

Компьютерная графика - раздел информатики, который изучает средства и способы создания и обработки графических изображений при помощт компьютерной техники. Несмотря на то, что для работы с компьютерной графикой существует множество классов программного обеспечения, различают четыре вида компьютерной графики. Это растровая графика, векторная графика, трёхмерная и фрактальная графика. Они отличаются принципами формирования изображения при отображении на экране монитора или при печати на бумаге.

Растровую графику применяют при разработке электронных (мультимедийных) и полиграфических изданий. Иллюстрации, выполненные средствами растровой графики, редко создают вручную с помощью компьютерных программ. Чаще для этой цели используют отсканированные иллюстрации, подготовленные художником на бумаге, или фотографии. В последнее время для ввода растровых изображений в компьютер нашли широкое применение цифровые фото- и видеокамеры. Соответственно, большинство графических редакторов, предназначенных для работы с растровыми иллюстрациями, ориентированы не столько на создание изображений, сколько на их обработку. В Интернете применяют растровые иллюстрации в тех случаях, когда надо передать полную гамму оттенклв цветного изображения.

Программные средства для работы с векторной графикой наоборот предназначены, в первую очередь, для создания иллюстраций и в меньшей степени для их обработки. Такие средства широко используют в рекламных агентствах, дизайнерских бюро, редакциях и издательствах. Оформительские работы, основанные на применении шрифтов и простейших геометрических элементов, решаются средствами векторной графики намного проще. Существуют примеры высокохудожественных произведений, созданных средствами векторной графики, но они скорее исключение, чем правило, поскольку художественная подготовка иллюстраций средствами векторной графики чрезвычайно сложна.

Трёхмерная графика широко используется в инженерном программировании, компьютерном моделировании физических объектов и процессов, в мультипликации, кинемотографии и компьютерных играх.

Программные средства для работы с фрактальной графикой предназначены для автоматической генерации изображений путем математических расчетов. Создание фрактальной художественной композиции состоит не в рисовании или оформлении, а в программировании. Фрактальную графику редко применяют для создания печатных или электронных документов, но ее часто используют в развлекательных программах.

Растровая графика

Основным (наименьшим) элементом растрового изображения является точка. Если изображение экранное, то эта точка называется пикселом. Каждый пиксел растрового изображения имеет свойства: размещение и цвет. Чем больше количество пикселей и чем меньше их размеры, тем лучше выглядит изображение. Большие объемы данных - это основная проблема при использовании растровых изображений. Для активных работ с большеразмерными иллюстрациями типа журнальной полосы требуются компьютеры с исключительно большими размерами оперативной памяти (128 Мбайт и более). Разумеется, такие компьютеры должны иметь и высокопроизводительные процессоры. Второй недостаток растровых изображений связан с невозможностью их увеличения для рассмотрения деталей. Поскольку изображение состоит из точек, то увеличение изображения приводит только к тому, что эти точки становятся крупнее и напоминают мозаику. Никаких дополнительных деталей при увеличении растрового изображения рассмотреть не удается. Более того, увеличение точек растра визуально искажает иллюстрацию и делает её грубой. Этот эффект называется пикселизацией.

Векторная графика

Как в растровой графике основным элементом изображения является точка, так в векторной графике основным элементом изображения является линия (при этом не важно, прямая это линия или кривая). Разумеется, в растровой графике тоже существуют линии, но там они рассматриваются как комбинации точек. Для каждой точки линии в растровой графике отводится одна или несколько ячеек памяти (чем больше цветов могут иметь точки, тем больше ячеек им выделяется). Соответственно, чем длиннее растровая линия, тем больше памяти она занимает. В векторной графике объем памяти, занимаемый линией, не зависит от размеров линии, поскольку линия представляется в виде формулы, а точнее говоря, в виде нескольких параметров. Что бы мы ни делали с этой линией, меняются только ее параметры, хранящиеся в ячейках памяти. Количество же ячеек остается неизменным для любой линии.

Линия - это элементарный объект векторной графики. Все, что есть в векторной иллюстрации, состоит из линий. Простейшие объекты объединяются в более сложные, например объект четырехугольник можно рассматривать как четыре связанные линии, а объект куб еще более сложен: его можно рассматривать либо как двенадцать связанных линий, либо как шесть связанных четырехугольников. Из-за такого подхода векторную графику часто называют объектно-ориентированной графикой. Мы сказали, что объекты векторной графики хранятся в памяти в виде набора параметров, но не надо забывать и о том, что на экран все изображения все равно выводятся в виде точек (просто потому, что экран так устроен). Перед выводом на экран каждого объекта программа производит вычисления координат экранных точек в изображении объекта, поэтому векторную графику иногда называют вычисляемой графикой. Аналогичные вычисления производятся и при выводе объектов на принтер. Как и все объекты, линии имеют свойства. К этим свойствам относятся: форма линии, ее толщина, цвет, характер линии (сплошная, пунктирная и т.п.). Замкнутые линии имеют свойство заполнения. Внутренняя область замкнутого контура может быть заполнена цветом, текстурой, картой. Простейшая линия, если она не замкнута, имеет две вершины, которые называются узлами. Узлы тоже имеют свойстьа, от которых зависит, как выглядит вершина линии и как две линии сопрягаются между собой.

Отправной точкой развития компьютерной графики можно считать 1930 год, когда в США нашим соотечественником Владимиром Зворыкиным (рис.1.), работавшим в компании “Вестингхаус” (Westinghouse), была изобретена электронно-лучевая трубка (ЭЛТ), впервые позволяющая получать изображения на экране без использования механических движущихся частей.

Началом эры собственно компьютерной графики можно считать декабрь 1951 года, когда в Массачусеттском технологическом институте (МТИ) для системы противовоздушной обороны военно-морского флота США был разработан первый дисплей для компьютера “Вихрь” (рис.2). Изобретателем этого дисплея был инженер из МТИ Джей Форрестер.

Одним из отцов-основателей компьютерной графики считается Айвен Сазерленд (Ivan Sotherland), который в 1962 году все в том же МТИ создал программу компьютерной графики под названием “Блокнот” (Sketchpad) (рис.3). Эта программа могла рисовать достаточно простые фигуры (точки, прямые, дуги окружностей), могла вращать фигуры на экране.

Под руководством Т. Мофетта и Н. Тейлора фирма Itek разработала цифровую электронную чертежную машину. В 1964 году General Motors представила систему автоматизированного проектирования DAC-1 (рис.4.), разработанную совместно с IBM.

В 1965 году фирма IBM выпустила первый коммерческий графический терминал под названием IBM-2250 (рис.5).

В 1968 году группой под руководством Н. Н. Константинова была создана компьютерная математическая модель движения кошки. Машина БЭСМ-4 (рис.6), выполняя написанную программу решения дифференциальных уравнений, рисовала мультфильм «Кошечка» (рис.7), который для своего времени являлся прорывом. Для визуализации использовался алфавитно-цифровой принтер.

В 1977 году Commodore выпустила свой РЕТ (рис.8.) (персональный электронный делопроизводитель), а компания Apple создала Apple-II (рис.9). Появление этих устройств вызывало смешанные чувства: графика была ужасной, а процессоры медленными. Однако ПК стимулировали процесс разработки периферийных устройств: недорогих графопостроителей и графических планшетов.

В конце 70-х годов для космических кораблей “Шаттл” появились летные тренажеры, основанные на компьютерной графике.
В 1982 году на экраны кинотеатров вышел фильм “Трон” (рис.10) в котором впервые использовались кадры, синтезированные на компьютере.
В 1984 году был выпущен первый Macintosh, название которого произошло от сорта яблок "Макинтош" (рис.11) с их графическим интерфейсом пользователя. Первоначально областью применения ПК были не графические приложения, а работа с текстовыми процессорами и электронными таблицами, но его возможности как графического устройства побуждали к разработке относительно недорогих программ как в области САПР, так и в более общих областях бизнеса и искусства.

К концу 80-х программное обеспечение имелось для всех сфер применения: от комплексов управления до настольных издательских комплексов. В конце восьмидесятых возникло новое направление рынка на развитие аппаратных и программных систем сканирования, автоматической оцифровки. Оригинальный толчок в таких системах должна была создать магическая машина Ozalid, которая бы сканировала и автоматически векторизовала чертеж на бумаге, преобразуя его в стандартные форматы CAD/CAM. Однако, акцент сдвинулся в сторону обработки, хранения и передачи сканируемых пиксельных

В 90-х стираются отличия между КГ и обработкой изображения. Машинная графика часто имеет дело с векторными данными, а основой для обработки изображений является пиксельная информация. Еще несколько лет назад каждый пользователь требовал рабочую станцию с уникальной архитектурой, а сейчас процессоры рабочих станций имеют быстродействие, достаточное для того, чтобы управлять как векторной , так и растровой информацией. Кроме того, появляется возможность работы с видео. Прибавьте аудиовозможности - и вы имеете компьютерную среду мультимедиа.

Все области применения - будь то искусство, инженерная и научная, бизнес/развлечения и - являются сферой применения КГ. Возрастающий потенциал ПК и их громадное число - обеспечивает устойчивый рост индустрии в данной отрасли.

Х/ф. «Трон», «Шрек»/

Формирование общих понятий о компьютерной графике

Но, в настоящее время существуют:


  1. Растровая графика.

  2. Векторная графика.

  3. Трехмерная графика.

  4. Фрактальная графика.

  5. Символьная графика
В связи с этим необходимо на парах разобрать все пять видов графики с целью формирования общего представления студентов о предмете и формирования их заинтересованности в нем.
Компьютерная графика (рассмотрим различные определения понятия "компьютерная графика")

  • область информатики, занимающаяся проблемами получения различных изображений (рисунков, чертежей, мультипликации) на компьютере ;

  • новая отрасль знаний, которая, с одной стороны, представляет комплекс аппаратных и программных средств, используемых для формирования, преобразования и выдачи информации в визуальной форме на средства отображения ЭВМ;

  • совокупность методов и приемов для преобразования при помощи ЭВМ данных в графическое представление;

  • вид искусства.

Ожидаемые результаты:


  1. Студенты получат представление о видах графики.

  2. Узнают о сферах применения

  3. Научатся распознавать виды графики

  4. Получат практические навыки применения полученных знаний с использованием различных видов графики.

Виды графики

Представление данных на компьютере в графическом виде впервые было реализовано в середине 50-х годов. Сначала, графика применялась в научно-военных целях.

Под видами компьютерной графики подразумевается способ хранения изображения на плоскости монитора.

Машинная графика в настоящее время уже вполне сформировалась как наука. Существует аппаратное и программное обеспечение для получения разнообразных изображений - от простых чертежей до реалистичных образов естественных объектов. Машинная графика используется почти во всех научных и инженерных дисциплинах для наглядности восприятия и передачи информации. Знание её основ в наше время необходимо любому ученому или инженеру. Машинная графика властно вторгается в бизнес, медицину, рекламу, индустрию развлечений. Примене­ние во время деловых совещаний демонстрационных слайдов, под­готовленных методами машинной графики и другими средствам автоматизации конторского труда, считается нормой. В медицине становится обычным получение трехмерных изображений внутренних ­органов по данным компьютерных томографов. В наши дни телевидение и другие рекламные предприятия часто прибегают к услугам машинной графики и компьютерной мультипликации. Использование машинной графики в индустрии развлечений охватыва­ет такие несхожие области как видеоигры и полнометражные художественные фильмы.

В зависимости от способа формирования изображений компьютерную графику подразделяют:

Показ презентации «Вектор-растр»


  • Растровая графика.

  • Векторная графика.

  • Трехмерная графика .

  • Фрактальная графика.

  • Символьная графика (устарела и на сегодняшний день практически не используется, поэтому рассматривать ее не будем)
Учащиеся рисуют таблицу и самостоятельно во время лекции заполняют её. Во время подведения итогов урока проверяется заполнение таблицы.

Растровое изображение

Растровое изображение составляется из мельчайших точек (пикселов) – цветных квадратиков одинакового размера. Растровое изображение подобно мозаике - когда приближаете (увеличиваете) его, то видите отдельные пиксели, а если удаляете (уменьшаете), пиксели сливаются.

Компьютер хранит параметры каждой точки изображения (её цвет, координаты). Причём каждая точка представляется определенным количеством бит (в зависимости от глубины цвета). При открытии файла программа прорисовывает такую картину как мозаику – как последовательность точек массива. Глубина цвета - сколько битов отведено на хранение цвета каждой точки:
- в черно-белом - 1 бит
- в полутоновом - 8 бит
- в цветном - 24 (32) бита на каждую точку.

Растровые файлы имеют сравнительно большой размер, т.к. компьютер хранит параметры всех точек изображения.

Поэтому размер файла зависит от параметров точек и их количества:


  • от размера изображения (в большем размере вмещается больше точек),

  • от разрешения изображения (при большем разрешении на единицу площади изображения приходится больше точек).
Чтобы увеличить изображение, приходится увеличивать размер пикселей-квадратиков. В итоге изображение получается ступенчатым, зернистым.

Для уменьшения изображения приходится несколько соседних точек преобразовывать в одну или выбрасывать лишние точки. В результате изображение искажается: его мелкие детали становятся неразборчивыми (или могут вообще исчезнуть), картинка теряет четкость.


Исходное изображение

Фрагмент увеличенного изображения

Как Вы думаете, растровое изображение масштабируется с потерей качества или нет? (Растровое изображение масштабируется с потерей качества)

Растровоеизображение нельзя расчленить. Оно «литое», состоит из массива точек. Поэтому в программах для обработки растровой графики предусмотрен ряд инструментов для выделения элементов «вручную».

Например, в Photoshop - это инструменты «Волшебная палочка», Лассо, режим маски и др.

Оригинал Увеличенный фрагмент для показа массива точек

Близкими аналогами являются живопись, фотография

Программы для работы с растровой графикой:

Microsoft Photo Editor

Adobe Photo Shop

Fractal Design Painter

Micrografx Picture Publisher
Применение:


  • для обработки изображений, требующей высокой точности передачи оттенков цветов и плавного перетекания полутонов. Например, для:

  • ретуширования, реставрирования фотографий;

  • создания и обработки фотомонтажа, коллажей;

  • применения к изображениям различных спецэффектов;

  • после сканирования изображения получаются в растровом виде
Векторное изображение

Если в растровой графике базовым элементом изображения является точка, то в векторной графике – линия. Линия описывается математически как единый объект, и потому объем данных для отображения объекта средствами векторной графики существенно меньше, чем в растровой графике. Линия – элементарный объект векторной графики. Как и любой объект, линия обладает свойствами: формой (прямая, кривая), толщиной, цветом, начертанием (сплошная, пунктирная). Замкнутые линии приобретают свойство заполнения. Охватываемое ими пространство может быть заполнено другими объектами (текстуры, карты) или выбранным цветом. Простейшая незамкнутая линия ограничена двумя точками, именуемыми узлами. Узлы , параметры которых влияют на форму конца линии и характер сопряжения с другими объектами. Все прочие объекты векторной графики составляются из линий. Например, куб можно составить из шести связанных прямоугольников, каждый из которых, в свою очередь, образован четырьмя связанными линиями. Возможно, представить куб и как двенадцать связанных линий, образующих ребра.

Компьютер хранит элементы изображения (линии, кривые, фигуры) в виде математических формул. При открытии файла программа прорисовывает элементы изображения по их математическим формулам (уравнениям).

Точка. Этот объект на плоскости представляется двумя числами (х, у), указывающими его положение относительно начала координат.

Прямая линия. Ей соответствует уравнение y = kx + b . Указав параметры k и b, всегда можно отобразить бесконечную прямую линию в известной системе координат, то есть для задания прямой достаточно двух параметров. Отрезок прямой. Он отличается тем, что требует для описания еще двух параметров – например, координат x 1 и х 2 начала и конца отрезка. Кривая второго порядка. К этому классу кривых относятся параболы, гиперболы, эллипсы, окружности, то есть все линии, уравнения которых содержат степени не выше второй. Кривая второго порядка не имеет точек перегиба. Прямые линии являются всего лишь частным случаем кривых второго порядка. Формула кривой второго порядка в общем виде может выглядеть, например, так:

x2+a1y2+a2xy+a3x+a4y+a5=0.

Кривая третьего порядка. Отличие этих кривых от кривых второго порядка состоит в возможном наличии точки перегиба. Например, график функции у = x 3 имеет точку перегиба в начале координат. Именно эта особенность позволяет сделать кривые третьего порядка основой отображения природных объектов в векторной графике. Например, линии изгиба человеческого тела весьма близки к кривым третьего порядка. Все кривые второго порядка, как и прямые, являются частными случаями кривых третьего порядка.

В общем случае уравнение кривой третьего порядка можно записать так:

x3+a1y3+a2x2y+a3xy2+a4x2+a5y2+a6xy+a7x+a8y+a9=0.

Таким образом, кривая третьего порядка описывается девятью параметрами. Описание ее отрезка потребует на два параметра больше.

Кривая третьего порядка (слева) и кривая Безье (справа)

Кривые Безье. Это особый, упрощенный вид кривых третьего порядка Метод построения кривой Безье (Bezier) основан на использовании пары касательных, проведенных к отрезку линии в ее окончаниях. Отрезки кривых Безье описываются восемью параметрами, поэтому работать с ними удобнее. На форму линии влияет угол наклона касательной и длина ее отрезка. Таким образом, касательные играют роль виртуальных “рычагов”, с помощью которых управляют кривой.

Векторное изображение масштабируется без потери качества: масштабирование изображения происходит при помощи математических операций: параметры примитивов просто умножаются на коэффициент масштабирования.
Изображение может быть преобразовано в любой размер
(от логотипа на визитной карточке до стенда на улице) и при этом его качество не изменится.

Векторноеизображение можно расчленить на отдельные элементы (линии или фигуры), и каждый редактировать , трансформировать независимо.

Векторные файлы имеют сравнительно небольшой размер, т.к. компьютер запоминает только начальные и конечные координаты элементов изображения -этого достаточно для описания элементов в виде математических формул. Размер файла как правило не зависит от размера изображаемых объектов, но зависит от сложности изображения: количества объектов на одном рисунке (при большем их числе компьютер должен хранить больше формул для их построения), характера заливки - однотонной или градиентной) и пр. Понятие «разрешение» не применимо к векторным изображениям.

Векторные изображения: более схематичны, менее реалистичны, чем растровые изображения, «не фотографичны».

Близкими аналогами являются слайды мультфильмов, представление математических функций на графике.


Программы для работы с векторной графикой:

Adobe Illustrator

Fractal Design Expression

Macromedia Freehand

Применение:


  • для создания вывесок, этикеток, логотипов, эмблем и пр. символьных изображений;

  • для построения чертежей, диаграмм, графиков, схем;

  • для рисованных изображений с четкими контурами, не обладающих большим спектром оттенков цветов;

  • для моделирования объектов изображения;

  • для создания 3-х мерных изображений;

Сравнение растрового и векторного изображения.

Компьютерное растровое изображение представляется в виде прямоугольной матрицы, каждая ячейка которой - цветная точка. Т.е. основным элементом растрового изображения является точка. Если изображение экранное, то эта точка называется пикселем.
Трехмерная графика

Для создания реалистичной модели объекта используют геометрические примитивы (прямоугольник, куб, шар, конус и прочие) и гладкие, так называемые сплайновые поверхности. Вид поверхности при этом определяется расположенной в пространстве сеткой опорных точек. Каждой точке присваивается коэффициент, величина которого определяет степень ее влияния на часть поверхности, проходящей вблизи точки. От взаимного расположения точек и величины коэффициентов зависит форма и “гладкость” поверхности в целом.

В упрощенном виде для пространственного моделирования объекта требуется:

спроектировать и создать виртуальный каркас (“скелет”) объекта, наиболее полно соответствующий его реальной форме;


Спроектировать и создать виртуальные материалы , по физическим свойствам визуализации похожие на реальные; присвоить материалы различным частям поверхности объекта (на профессиональном жаргоне – “спроектировать текстуры на объект”);

Настроить физические параметры пространства, в котором будет действовать объект, – задать освещение, гравитацию, свойства атмосферы, свойства взаимодействующих объектов и поверхностей;

Задать траектории движения объектов;

наложить поверхностные эффекты на итоговый анимационный ролик.


Программы для работы с трехмерной графикой:

3D Studio MAX 5, AutoCAD, Компас

Применение:


  • научные расчеты,

  • инженерное проектирование,

  • компьютерное моделирование физических объектов

  • изделия в машиностроении,

  • видеороликах,

  • архитектуре,

  • изделиях машиностроения изображения моделируются и перемещаются в пространстве.
Фрактальная графика

Фрактальная графика – одна из быстроразвивающихся и перспективных видов компьютерной графики. Математическая основа - фрактальная геометрия. Фрактал – структура, состоящая из частей, подобных целому. Одним из основных свойств является самоподобие. Фрактус – состоящий из фрагментов)

Объекты называются самоподобными, когда увеличенные части объекта походят на сам объект. Небольшая часть фрактала содержит информацию о всем фрактале.

В центре находится простейший элемент – равносторонний треугольник, который получил название- фрактальный.

На среднем отрезке сторон строятся равносторонние треугольники со стороной =1/3а от стороны исходного фрактального треугольника

В свою очередь на средних отрезках сторон, являющихся объектами первого поколения строятся треугольника второго поколения1/9а от стороны исходного треугольника.

Таким образом, мелкие объекты повторяют свойства всего объекта. Процесс наследования можно продолжать до бесконечности.

Полученный объект носит название – фрактальной фигуры .

Абстрактные композиции можно сравнить со снежинкой, с кристаллом.


Фрактальная графика основана на математических вычислениях. Базовым элементом фрактальной графики является сама математическая формула, то есть никаких объектов в памяти компьютера не хранится и изображение строится исключительно по уравнениям.

Программа для работы с фрактальной графикой:

Фрактальная вселенная 4.0 fracplanet

Применяют:


  • Математики,

  • Художники
Форматы файлов

Необходимо подробно рассмотреть форматы графических файлов.

Сравнительная характеристика


Растровое

изображение


Векторное

изображение


Трехмерное

изображение


Фрактальное изображение

Кодирование изображений:

составляется из мельчайших точек пикселов) – цветных квадратиков одинакового размера.

состоит из контуров элементов (прямых, кривых линий, геометрических фигур),

Компьютерная графика (КГ) Это область деятельности, в которой компьютеры используются как инструмент для синтеза (создания) изображений, так и для обработки визуальной информации, полученной из реального мира. Также компьютерной графикой называют результат такой деятельности.

Первые шаги: КГ и военные «Мы живем во времена механических и электронных чудес. Одно из них создано в Массачусетском технологическом институте для военно-морского флота» В декабре 1951 года американские телезрители в одной из телепередач увидели представление (презентацию) электронного компьютера Whirlwind ("Вихрь-1"). Вел передачу обозреватель Эдвард Мюрроу, который общался напрямую с компьютерной лабораторией MIT (Массачусетского технологического института). Зрители увидели на экране нечто похожее на слова, составленные из огней иллюминации: “ХЕЛЛО, М-Р МЮРРОУ”. На самом деле никаких лампочек не было - это светились яркие точки на экране дисплея, на ЭЛТ.

Электронный компьютер «Вихрь» Требовалось рассчитать расход топлива, траекторию полета и скорость ракеты «Викинг» (для Пентагона). Телезрители увидели, как на экране «Вихря» появились графики, пути, скорости и расхода топлива ракеты для типичного полета (составлены из светящихся точек) Джей У. Форрест

Назначение «Вихря» Для управления летным тренажером (40 -е гг.) «Вихрь» - первый цифровой компьютер, работающий в реальном времени – универсальная машина для различных систем. Для совершенствования системы противовоздушной обороны (ВВС США): – управление огнем, – противолодочная оборона, – управление воздушным движением Преимущества графического отображения

«Вихрь» - основа для 1 серийной модели компьютера со средствами интерактивной графики Вихрь телефонные линии Филде (близь Бостона) радиолокационная станция в Хэнском- Инструкции программистов для обработки серийных чисел: компьютер получал экранные координаты преобразовывал их в графическую форму рисовал на экране подобие карты Для работы оператора был создан световой пистолет: для получения подробной информации о самолете оператор прикасался стволом пистолета к отметке на экране, от пистолета в компьютер передавался импульс, программа выводила на экран данные о самолете.

КГ в инженерном проектировании Айвен Сазерленд - пионер компьютерной графики, создал первый интерактивный графический пакет «Sketchpad» , прообраз будущих САПР. Он продемонстрировал, что компьютерная графика может быть использована как для художественного и технического применения, в дополнение к демонстрации нового (для того времени) способа взаимодействия человека и компьютера. В качестве манипулятора использовалось световой перо, пришедшее на смену световому пистолету. Айвен Сазерленд прикоснулся кончиком светового пера к центру экрана монитора, где светилось слово «чернила» , от чего оно превратилось в маленький крестик. Затем, нажав одну из кнопок, Сазерленд начал двигать световое перо. На экране возникла ярко-зеленая линия, тянувшаяся от центра крестика к точке, в которой находилось перо. И куда бы оно ни перемещалось, линия следовала за ним. Нажав другую кнопку, Сазерленд оставил линию на экране и убрал световое перо.

Световое перо Содержит фотоэлемент непосредственно в своем корпусе или вне его. Принцип работы: по световоду из стеклянных нитей или проводам сигнал передается в корпус терминала. перо, направленное на экран, воспринимает световой сигнал в момент, когда электронный луч высветил какую-либо деталь изображения перед острием пера. данный сигнал электронная схема фиксирует и опознает, какую деталь указали. Для «рисования» пером: 1 способ: При нажатии на кнопку или корпус пера электронная схема генерирует на экране луч, пробегающий по экрану строками. Экран «вспыхивает» в данный момент. В некотором месте некоторой строки перо воспринимает сигнал, обработав его, схема определяет положение пера. 2 способ: на экран дополнительно выводится маркер – группа точек или маленьких штрихов. Перо наводится на маркер, и тут начинает работать система слежения: маркер «движется» за пером (схема отслеживает какие точки маркера засвечивают перо, а какие нет). Координаты центра маркера передаются в программу и могут быть использованы.

ТХ-2 и «Блокнот» (1961 -1962 гг.) Состав ТХ-2: – световое перо, – экран на электронно-лучевой трубке, – «гигантская» память (286000 байт), – кнопочный блок. Подпрограммы «Блокнота»: перемещение крестика за пером по экрану, запоминание координат крестика в момент нажатия кнопки, вычисление координат новых точек, лежащих на прямой между первоначально заданной и текущей точкой, занесение нового отрезка в часть памяти компьютера, называемую буфером регенерации изображения, рисование дуги и полной окружности, части окружностей, сцепления, позволяющие строить объекты с заданными свойствами. Объект в «Блокноте» - точки, отрезки и дуги, соединенные между собой. 1963 г. – снят фильм о работе «Блокнота» . КГ стала применятся как средство проведения инженерных и конструкторских разработок в промышленности.

КГ: от единичных образов к признанию «General Motors» заключила соглашение с корпорацией IBM на разработку компьютерной системы DAC-1 (Design Augmented by Computers) для конструирования автомобилей (1964 г.). DAC-1: + позволяла проводить плавные кривые, которые нельзя описать простыми математическими формулами, - не имела средств для прямого рисования на экране (поэтому конструктор описывал очертания машины в программе или вводил в память компьютера обычный чертеж, переводя его при помощи специальной камеры в цифровую форму). + оператор мог манипулировать отдельными частями чертежа с помощью электронного планшета.

Единичные образы Интерес к применению новых, графических «способностей» компьютеров проявили: «LOCKHEED-GEORGIA» - компьютерные системы для конструирования самолетов; Нефтяные компании – компьютерные системы для составления карт по данным сейсмической разведки. Но все они создавались в единичном экземпляре для определенных целей!

Графические терминалы 1965 г. - компания IBM выпустила первый графический терминал IBM-2250 для работы с компьютерами серии «System-360» . - быстродействие программы недостаточно велико, чтобы можно было оперировать сложными изображениями, - операция вращения занимает много процессорного времени. 1968 г. - «Evans and Sutherland» создание новой системы LDS-1: возможность менять + сократилось время регенерации изображения, изображение с невиданной + число линий, выводимых на экран без мерцания возросло скоростью не менее чем в 100 раз - очень высокая стоимость (250000$, вдвое дороже IBM-2250) «Тetroniks» - создание запоминающей электронно-лучевой трубки (ЗЭЛТ), встраиваемой в терминал: + дешевая стоимость (4000$), - возможность работы только с плоскими изображениями, - медленный процесс построения изображения, - размытое, бледное изображение, - отсутствие возможности выборочного стирания частей изображения и вращения. Тем не менее изображения напоминали чертежи, о реалистичном изображении не было и речи

Расширение графических возможностей Растровые мониторы: + реалистичное изображение - высокие требования к памяти высокая стоимость, т. к. : до 60 -х гг. ЗУ компьютера строились преимущественно на дорогостоящих магнитных сердечниках (500000$ за миллион бит), с середины 60 -х гг. стали применять магнитный барабан (~ 30000$), который мог хранить данные для 10 кадров изображения. Растровые системы применяли на крупных электростанциях, в центрах управления метрополитеном и в научных лабораториях. НАСА для изучения поверхности Марса (1969 -1972 гг.).

Интегральные схемы (начало 70 -х гг.) Появились кадровые буферы на сдвиговых регистрах, выполненных в виде интегральных схем: + работают быстрее механических буферов на магнитных барабанах, - латентность (задержка между вводом информации и появлением ее на экране). ИС – это небольшой монокристалл кремния, содержащий множество электронных компонентов.

Запоминающие устройства с произвольным доступом (ЗУПД) 1968 г. – память ЗУПД = 256 бит, стоимость – 1$ за бит, конец 70 -х гг. - память ЗУПД = 1024 бит, 1973 г. - память ЗУПД = 4 Кб, 1975 г. - память ЗУПД = 16 Кб, 1980 г. - память ЗУПД = 64 Кб, 1983 г. - память ЗУПД = 256 Кб, 1984 г. - память ЗУПД = 1024 Кб=1 Мб! «… если бы стоимость автомобилей падала так же быстро, как цена ИС памяти, сегодня “роллс-ройс” можно было бы купить за 1$» Карл Макговер

1974 г. Работа над проблемой повышения качества изображений, получаемых со спутников, которые ведут наблюдение за с/х и лесными угодьями, минеральными ресурсами и т. д. Для этого разработчики снизили требования к памяти, используя для каждого изображения всего лишь несколько сотен цветов, т. е. создали таблицы выбора цветов, быстро приспособленных для многих областей применения машинной графики. Кадровый буфер хранит не саму информацию о цветах, а указатели на адреса памяти, где она записана. Так, кадровый буфер, в котором каждый пиксел описывается 8 битами, может дать только 256 сочетаний красного, зеленого и синего лучей ЭЛТ. Если же 8 бит задают адреса, то цвета можно выбирать из почти неограниченного набора оттенков, интенсивности и насыщенности. Более того, таблицу выбора можно перепрограммировать для определенных типов изображений. Т. о. ограниченная палитра позволяет получать плавные тени и хорошо различимые оттенки для каждого изображения.

КГ: взаимодействие человека и компьютера «Художники пишут картины, нанося краски на холст. Те, кто связан с компьютерной графикой, создают свои творения, придумывая математические функции, графики которых похожи на предметы» . Джеймс Блинн К середине 80 -х г. даже самые дешевые домашние компьютеры начали оснащать интегральными схемами, выполняющими основные графические функции. 70 -80 -е гг. – КГ все глубже проникает в повседневную жизнь.

КГ: массовое применение «Xerox» - выпустила 2000 компьютеров Alto, проводила стажировку для инженеров в области КГ. «Apple» (С. Джобс, С. Возняк) + «Xerox» = создали первый для серийного выпуска ПК «Лиза» , обладающего широкими графическими возможностями и оснащенного манипулятором «мышь» . «Apple» выпустила ПК Macintosh - «дружественной» машины по отношению к пользователям. В к. 80 -х гг. : появляется оконный графический интерфейс, ПК оснащаться «мышью» , развивается система WYSIWYG (What You See What You Get - что ты видишь, то ты и получишь), создаются первые настольные издательские системы (1986 г.), появляются программы для профессиональных художников и дизайнеров (1986 г.)

Аппаратные платформы КГ 1. Компьютеры Apple Macintosh применяются преимущественно художниками и дизайнерами-графиками, а также в полиграфии; 2. Компьютеры Silicon Graphics являются инструментом профессиональных аниматоров, а также конструкторовпроектировщиков в силу ряда технических характеристик. 3. Компьютеры РС применяются в графическом дизайне, полиграфии и даже анимации.

История развития КГ 1940 -1970 гг. – время больших компьютеров (эра до персональных компьютеров). Графикой занимались только при выводе на принтер. В этот период заложены математические основы. Особенности: пользователь не имел доступа к монитору, графика развивалась на математическом уровне и выводилась в виде текста, напоминающего на большом расстоянии изображение. Графопостроители появились в конце 60 -х годов и практически были не известны. 1971 -1985 гг. – появились персональные компьютеры, т. е. появился доступ пользователя к дисплеям. Роль графики резко возросла, но наблюдалось очень низкое быстродействие компьютера. Программы писались на ассемблере. Появилось цветное изображение (256). Особенности: этот период характеризовался зарождением реальной графики.

История развития КГ 1986 -1990 гг. – появление технологии Multimedia (Мультимедиа). К графике добавились обработка звука и видеоизображения, общение пользователя с компьютером расширилось. Особенности: – появление диалога пользователя с персональным компьютером; – появление анимации и возможности выводить цветное изображение. 1991 -2008 гг. – появление графики нашего дня Virtual Reality. Появились датчики перемещения, благодаря которым компьютер меняет изображения при помощи сигналов посылаемых на него. Появление стереоочков (монитор на каждый глаз), благодаря высокому быстродействию которых, производится имитация реального мира. Замедление развития этой технологии из-за опасения медиков, т. к. благодаря Virtual Reality можно очень сильно нарушить психику человека, благодаря мощному воздействию цвета на неё.

История компьютерной графики в России История компьютерной графики в СССР началась практически одновременно с её рождением в США.

1964 - Первая компьютерная визуализация В Институте прикладной математики (ИПМ), г. Москва, Ю. М. Баяковским и Т. А. Сушкевич продемонстрирован первый опыт практического применения машинной графики при выводе на характрон последовательности кадров, образующих короткий фильм с визуализацией обтекания цилиндра плазмой.

1968 Первый отечественный растровый дисплей В ВЦ АН СССР, на машине БЭСМ-6 установлен первый отечественный растровый дисплей, с видеопамятью на магнитном барабане весом 400 кг. Первая дипломная работа по машинной графике в Московском университете Фолкер Хаймер. Транслятор и интерпретатор для программного языка L^6. Рассматривается реализация языка L^6, предложенного Кеннетом Ноултоном для решения некоторых задач анимации. Первый в мире мультфильм, нарисованный компьютером. Сделан из последовательности распечаток, выполненных на перфоленте с помощью машины БЭСМ-4. Этот мультфильм в своё время был большим прорывом в области компьютерного моделирования, ибо картинка не просто нарисована, а получена решением уравнений, задающих движение кошки.

«Кошечка» Кадры фильма формировались путём печати символов БЭСМ-4 на бумаге с помощью АЦПУ-128, затем их готовил к «плёнке» профессиональный художник-мультипликатор. Именно ему принадлежат кадры (следующие за титрами), когда кошка строит рожицы и выгибает спину. Движение кошки моделировалось системой дифференциальных уравнений второго порядка. Вероятно, это первая компьютерная анимация, где использовался такой приём. Уравнения выводил Виктор Минахин. Так как добиться выполнения определенных движений от животного было тяжело, в основу уравнений легли его собственные движения: он ходил на четвереньках и отмечал последовательность работы мышц при этом. Другим важным техническим нововведением мультфильма было представление трехмерного анимируемого объекта в виде иерархической структуры данных, напоминающей октодерево. На западе подобные техники анимации были переоткрыты только в 80 -х годах XX века, хотя в биомеханике такие расчёты движения велись и раньше - с начала 1970 -х гг. Уравнения мультфильма не выводились исходя из физических моделей мышц и суставов животного, они составлены «на глазок» , чтобы воспроизводить типичную походку кошки. Тем не менее авторам удалось достигнуть реализма движений, который отметил, к примеру профессор Университета Огайо Рик Парент, автор фундаментальной книги «Компьютерная анимация: алгоритмы и технология» .

История создания «Кошечки» Мультфильм был начат в лаборатории Александра Кронрода института теоретической и экспериментальной физики (ИТЭФ), но после того, как лаборатория была закрыта, Константинов, вместе с коллективом создателей мультфильма перенесли работу сначала в Институт проблем управления (ИПУ), а затем в Педагогический институт им. Ленина. Перевод полученных при расчёте бумажных распечаток в форму мультфильма вёлся на кафедре научной кинематографии МГУ, которая и значится в титрах. При просчёте мультфильма на разных экземплярах БЭСМ-4 в разных институтах создателям пришлось столкнуться с проблемой несовместимости некоторых машинных кодов для них, из-за чего программу приходилось поправлять на ходу. Первый показ мультфильма состоялся в МГУ. Затем автор неоднократно демонстрировал его на своих лекциях для школьников. Спустя 6 лет в журнале «Проблемы кибернетики» была опубликована статья, подробно описывающая технику создания мультфильма.

1970 Выпущен первый обзор по машинной графике, представленный затем как доклад на Вторую Всесоюзную конференцию по программированию (ВКП-2). Штаркман В. С. , Баяковский Ю. М. Машинная графика. Препринт ИПМ АН СССР, 1970. Первая публикация на русском языке, в которой появилось словосочетание машинная графика.

Защищена первая диссертация в СССР по машинной графике Список нескольких диссертаций приводится ниже: Карлов Александр Андреевич Вопросы математического обеспечения дисплея со световым карандашом и его использование в задачах экспериментальной физики Дубна, 1972 Грин Виктор Михайлович Программное обеспечение для работы с трехмерными объектами на графических терминалах Новосибирск, 1973 Баяковский Юрий Матвеевич Анализ методов разработки графического обеспечения ЭВМ Москва, 1974 Злотник Евгений Матвеевич Разработка и исследование комплекса технических средств и методики проектирования оперативной графической системы Минск, 1974 Лысый Семен Тимофеевич G 1 - Геометрическая система программного обеспечения ЭВМ Кишинев, 1976 Пигузов Сергей Юрьевич Разработка и исследование средств графического взаимодействия геофизика с ЭВМ при обработке данных сейсморазведки Москва, 1976

1976 На русском языке издана книга У. Ньюмена, Р. Спрулла «Основы интерактивной машинной графики» (под редакцией В. А. Львова).

1977 Первая встреча графиков - «региональная конференция» , но собралось достаточно представительное сообщество, получилась Всесоюзная.

1979 Первая всесоюзная конференция по машинной графике прошла в Новосибирске в сентябре. Список следующих конференций: Всесоюзная конференция по проблемам машинной графики Новосибирск, 1981 г. Всесоюзная конференция по проблемам машинной графики и цифровой обработки изображений Владивосток, 24 -26 сентября 1985 г. IV Всесоюзная конференция по машинной графике Протвино, 9 -11 сентября 1987 г. V Всесоюзная конференция по машинной графике "Машинная графика 89" Новосибирск, 31 октября-2 ноября 1989 г.

1979 Первый полутоновой цветной растровый дисплей Гамма-1 Первую пригодную к активному использованию в кино и телевидении дисплейную станцию «Гамма» создали в Институте прикладной физики в новосибирском академ. городке Владимир Сизых, Петр Вельтмандер, Алексей Бучнев, Владимир Минаев и др. Разрешение первой станции было 256× 6 бит, и затем непрерывно увеличивалось. Дисплейная станция Гамма 7. 1 обеспечивала разрешение 1024*768 для прогрессивной развертки монитора 50 Гц и имела объём видеопамяти 1 Мб. Во второй половине 1980 -х гг. «Гамма» , выпускавшаяся серийно, поставлялась и успешно эксплуатировалась государственными телецентрами страны.

1981 Выход графического пакета Атом Разработка пакета была инициирована Ю. М. Баяковским. За основу была взята пропагандируемая им тогда Core System (Каминский, Клименко, Кочин).

1983 Первый спецкурс по машинной графике Ю. М. Баяковский начал читать годовой спецкурс по машинной графике для студентов факультета Вычислительной математики и кибернетики Московского государственного университета. С 1990 г. курс читается как обязательный для студентов второго года обучения.

1985 Первый доклад принят на Eurographics 1985 «Пробили окно в графическую Европу» - первый доклад из СССР принят на конференцию Eurographics 1985. Однако, поскольку Перестройка ещё не началась, то докладчикам не разрешили выехать из СССР, и первый раз советская делегация посетила конференцию только в 1988 году.

1986 Пакет Атом-85 выходит в ЦЕРН Графический пакет Атом-85 выпущен в ЦЕРН, где активно использовался (наравне с Графором) для задач иллюстративной графики (Клименко, Кочин, Самарин).

Граница 80 -х и 90 -х годов Спрос на исследования и разработки на внутрироссийском рынке упал практически до нуля, и вместе с тем исчезли традиционные (советские) возможности финансирования. Но открылись возможности международного сотрудничества. Это привело к кардинальному изменению тематики и условий работы, а также требований к научно-исследовательским и опытно-конструкторским работам (НИОКР).

1990 Организована первая российская компания компьютерной графики «Драйв» В 1989 году, Александр Пекарь, Сергей Тимофеев и Владимир Соколов организовали студию компьютерной графики на ВПТО «Видеофильм» , которая спустя год стала первой самостоятельной компанией компьютерной графики, переместившись изпод крыла «Видеофильма» в Центральный павильон ВДНХ.

1991 В феврале в Москве прошла первая международная конференция по компьютерной графике и зрению Графи. Кон"91 Организована Академией наук СССР в лице Института прикладной математики имени М. В. Келдыша АН СССР, Союзом Архитекторов СССР и некоторыми другими организациями при содействии и поддержке международной ассоциации ACM Siggraph (США). Американские гости: Эд Кэтмулл (президент компании «Pixar» , сделавший с Джорджем Лукасом Звездные войны) Джон Ласситер («Pixar» , автор фильма «Tin Toy») Джим Кларк (создатель компании «Silicon Graphics» , законодатель мод в области профессиональных графических станций) Первым российским лауреатом на международном конкурсе PRIX ARS ELECTRONICA в номинации Computer Animation стал коллектив из Новосибирска.

1993 Проведен первый фестиваль компьютерной графики и анимации АНИГРАФ"93 В 1992 году Владимиром Лошкарёвым, руководителем фирмы «Joy Company» , занимающейся продвижением на российский рынок пакетов графических программ и оборудования, была организована первая научно-практическая конференция по компьютерной графике. Тогда и пришла идея фестиваля, сочетающего в себе и техническую сторону, и коммерцию, и чистое творчество. Фестиваля АНИГРАФ был организован при участии ВГИКа, сопредседателем оргкомитета стал Сергей Лазарук (проректор по научной и творческой работе ВГИКа). На выставке были представлены все крупнейшие производители графических станций. На творческом конкурсе было представлено более 50 работ. К сожалению, до десятилетнего юбилея фестиваль не дожил, и был закрыт как коммерчески несостоятельный.

1994 Первая компьютерная графика в отечественном кино В фильме «Утомленные солнцем» эпизод с шаровой молнией был подготовлен компанией «Render Club» .

1996 Первые попытки собрать и систематизировать исторические факты Timour Paltashev. Russia: Computer Graphics -Between the Past and the Future. Computer Graphics, vol. 30, No. 2, May 1996. Special issue: Computer Graphics Around the World. Yuri Bayakovsky. Russia: Computer Graphics Education Takes Off in the 1990"s. Computer Graphics, Vol. 30, No. 3, August 1996. Special issue: Computer Graphics Education -- Worldwide Effort

2000 -2001 гг. 2000 г. - Спецвыпуск журнала Computer&Graphics Vol. 24 «Computer Graphics in Russia» . 2001 г. - Появление виртуальной реальности в России. В Протвино прошла первая конференция из серии VEon. PC с демонстрацией созданной группой Станислава Клименко в кооперации с Мартином Гебелем (ИМК, С. Августин) первой в России установки виртуальной реальности.

2003 Первая конференция КРИ-2003 разработчиков компьютерных игр 21 и 22 марта 2003 года в Московском Государственном Университете состоялась первая международная Конференция Разработчиков компьютерных Игр (КРИ) в России, организованная DEV. DTF. RU - ведущим специализированным ресурсом в Рунете для игровых разработчиков и издателей. КРИ 2003 впервые в истории российской игровой индустрии собрала для обмена опытом и обсуждения самых различных проблем практически всех профессионалов отрасли. В КРИ 2003 приняло участие около 40 компаний из России, а также ближнего и дальнего зарубежья, действующих как в сфере разработки, так и издания игрового ПО, а общее число посетителей конференции, по различным оценкам, составило от 1000 до 1500 человек.

2006 Первая практическая конференция по компьютерной графике и анимации CG Event-2006 Вдохновленные конференцией SIGGRAPH, автором книги «Понимая Maya» Сергей Цыпцын и создателем сайта cgtalk. ru Александр Костин была организована первая практическая конференция по компьютерной графике CG Event, ставшая идейной наследницей фестиваля АНИГРАФ. В первой же CG Event участвовало более 500 человек, и в последующем количество участников только росло.

Изучив материал данной главы, студент должен:

знать

  • историю развития программных средств для работы с графикой;
  • области применения компьютерной графики;
  • классификацию компьютерной графики, типы представления графической информации;
  • основные виды описания графики, их достоинства и недостатки;

уметь

  • разбираться в графических форматах;
  • ориентироваться в среде различной цифровой графики и оптимально ее использовать;
  • применять полученные знания для освоения графических программ;

владеть

  • необходимой терминологией;
  • сведениями, используемыми в практической работе с цифровыми изображениями.

Понятие, история развития, области применения и виды компьютерной графики

Понятие и история компьютерной графики

Компьютерная графика (машинная, цифровая графика) – область деятельности, в которой компьютеры используются в качестве инструмента для создания изображений, а также для обработки визуальной информации, полученной из реального мира. Также компьютерной графикой называют и результат этой деятельности.

История компьютерной графики. Первые вычислительные машины не имели специальных средств для работы с графикой, однако уже использовались для получения и обработки изображений. Программируя память первых электронных машин, построенную на основе матрицы ламп, можно было получать узоры.

В 1961 г. программист С. Рассел возглавил проект по созданию первой компьютерной игры с графикой. Игра Spacewar была создана на машине PDP-1.

В 1963 г. американский ученый Айвен Сазерленд создал программноаппаратный комплекс Sketchpad , который позволял рисовать точки, линии и окружности на трубке цифровым пером (световое перо (англ. light реп ) – один из инструментов ввода графических данных в компьютер, разновидность манипуляторов). Поддерживались базовые действия с примитивами – перемещение, копирование и др. По сути, это был первый векторный редактор , реализованный на компьютере. Также программу можно назвать первым графическим интерфейсом, причем она являлась таковой еще до появления самого термина.

В середине 1960-х гг. появились разработки в промышленных приложениях компьютерной графики. Так, под руководством Т. Мофетта и Н. Тейлора фирма Itek разработала цифровую электронную чертежную машину. В 1964 г. General Motors представила систему автоматизированного проектирования DAC-1, разработанную совместно с IBM.

В 1964 г. группой под руководством II. II. Константинова была создана компьютерная математическая модель движения кошки. Машина БЭСМ-4, выполняя написанную программу решения дифференциальных уравнений, рисовала мультфильм "Кошечка", который для своего времени являлся прорывом. Для визуализации использовался алфавитно-цифровой принтер.

В 1968 г. существенного прогресса компьютерная графика достигла с появлением возможности запоминать изображения и выводить их на компьютерном дисплее, электронно-лучевой трубке.

Области применения цифровой графики

Научная графика – первые компьютеры использовались лишь для решения научных и производственных задач. Чтобы лучше представить полученные результаты, производилась их графическая обработка, строились графики, диаграммы, чертежи рассчитанных конструкций. Первые графики на машине получали в режиме символьной печати. Затем появились специальные устройства – графопостроители (плоттеры) для вычерчивания чертежей и графиков чернильным пером на бумаге. Современная научная компьютерная графика дает возможность проводить вычислительные эксперименты с наглядным представлением их результатов.

Деловая графика – область компьютерной графики, предназначенная для наглядного представления различных показателей работы учреждений. Плановые показатели, отчетная документация, статистические сводки – для них с помощью компьютерной графики создаются иллюстративные материалы. Программные средства деловой графики включаются в состав электронных таблиц.

Конструкторская графика используется в работе инженеров-конструкторов, архитекторов, изобретателей новой техники. Этот вид компьютерной графики является обязательным элементом САПР (систем автоматизации проектирования). Средствами конструкторской графики можно получать как плоские изображения (проекции, сечения), так и пространственные трехмерные изображения.

Иллюстративная графика – рисование, черчение, моделирование на экране компьютера. Пакеты иллюстративной графики относятся к прикладному программному обеспечению общего назначения. Программные средства иллюстративной графики называются графическими редакторами.

Художественная и рекламная графика популярна во многом благодаря развитию фотографии, рекламы и телевидения. С помощью компьютера создаются печатные материалы, различного рода рекламная продукция, мультфильмы, компьютерные игры, интерактивные и видеоуроки, слайд- и видеопрезентации. Кроме графических редакторов, для этих целей используются графические пакеты, требующие больших ресурсов компьютера по быстродействию и памяти. Отличительной особенностью этих графических пакетов является возможность создания реалистических изображений и движущихся картинок. Получение рисунков трехмерных объектов, их повороты, приближения, удаления, деформации связаны с большим объемом вычислений. Передача освещенности объекта в зависимости от положения источника света, расположения теней, фактуры поверхности требует расчетов, учитывающих законы оптики.

Компьютерная анимация – создание движущихся изображений. Художник создает на экране рисунки начального и конечного положения движущихся объектов, все промежуточные состояния рассчитывает и изображает компьютер, выполняя расчеты, опирающиеся на математическое описание данного вида движения. Полученные рисунки, выводимые последовательно на экран с определенной частотой, создают иллюзию движения.

Мультимедиа – объединение высококачественного изображения на экране компьютера со звуковым сопровождением. Наибольшее распространение системы мультимедиа получили в области обучения, рекламы, развлечений.

Научная работа. Компьютерная графика является также одной из областей научной деятельности. В области компьютерной графики защищаются диссертации, а также проводятся различные конференции. На факультете вычислительной математики и кибернетики (ВМиК) МГУ им. М. В. Ломоносова действует лаборатория компьютерной графики.

Виды компьютерной графики

По способам задания изображений компьютерную графику можно разделить на категории. Три основных категории – растровая, векторная и трехмерная графика.

Двумерная графика (2D – от англ. two dimensions два измерения) – это изображение на плоскости, имеющее длину и ширину. Двумерная компьютерная графика классифицируется по типу представления графической информации и следующими из него алгоритмами обработки изображений. Обычно компьютерную графику разделяют на векторную и растровую, хотя обособляют еще и фрактальный тип представления изображений.

В растровой графике всякое изображение рассматривается как совокупность точек разного цвета. В векторной графике изображение является совокупностью простых элементов: прямых линий, дуг, окружностей, эллипсов, прямоугольников, закрасок и др., которые называются графическими примитивами.

  • Примитив (графический примитив) – простейшая геометрическая фигура.
  • Векторный редактор – программа для создания и редактирования векторных изображений.
  • Фрактал (от лат. fractus – состоящий из фрагментов) – структура, формирующаяся из нерегулярных отдельных элементов, которые подобны целому. Описать такой объект можно всего лишь несколькими математическими уравнениями.

Отправной точкой развития компьютерной графики можно считать 1930 год, когда в США нашим соотечественником Владимиром Зворыкиным, работавшим в компании “Вестингхаус” (Westinghouse), была изобретена электронно-лучевая трубка (ЭЛТ), впервые позволяющая получать изображения на экране без использования механических движущихся частей.

Началом эры собственно компьютерной графики можно считать декабрь 1951 года, когда в Массачусеттском технологическом институте (МТИ) для системы противовоздушной обороны военно-морского флота США был разработан первый дисплей для компьютера “Вихрь”. Изобретателем этого дисплея был инженер из МТИ Джей Форрестер.

Одним из отцов-основателей компьютерной графики считается Айвен Сазерленд (Ivan Sotherland), который в 1962 году все в том же МТИ создал программу компьютерной графики под названием “Блокнот” (Sketchpad).Эта программа могла рисовать достаточно простые фигуры (точки, прямые, дуги окружностей), могла вращать фигуры на экране.

Под руководством Т. Мофетта и Н. Тейлора фирма Itek разработала цифровую электронную чертежную машину. В 1964 году General Motors представила систему автоматизированного проектирования DAC-1, разработанную совместно с IBM.

В 1965 году фирма IBM выпустила первый коммерческий графический терминал под названием IBM-2250 (рис.5).

В 1968 году группой под руководством Н. Н. Константинова была создана компьютерная математическая модель движения кошки. Машина БЭСМ-4,выполняя написанную программу решения дифференциальных уравнений, рисовала мультфильм «Кошечка» (рис.7), который для своего времени являлся прорывом. Для визуализации использовался алфавитно-цифровой принтер.

В 1977 году Commodore выпустила свой РЕТ (персональный электронный делопроизводитель), а компания Apple создала Apple-II. Появление этих устройств вызывало смешанные чувства: графика была ужасной, а процессоры медленными. Однако ПК стимулировали процесс разработки периферийных устройств: недорогих графопостроителей и графических планшетов.

К концу 80-х программное обеспечение имелось для всех сфер применения: от комплексов управления до настольных издательских комплексов. В конце восьмидесятых возникло новое направление рынка на развитие аппаратных и программных систем сканирования, автоматической оцифровки. Оригинальный толчок в таких системах должна была создать магическая машина Ozalid, которая бы сканировала и автоматически векторизовала чертеж на бумаге, преобразуя его в стандартные форматы CAD/CAM. Однако, акцент сдвинулся в сторону обработки, хранения и передачи сканируемых пиксельных.

В 90-х стираются отличия между КГ и обработкой изображения. Машинная графика часто имеет дело с векторными данными, а основой для обработки изображений является пиксельная информация.

Еще несколько лет назад каждый пользователь требовал рабочую станцию с уникальной архитектурой, а сейчас процессоры рабочих станций имеют быстродействие, достаточное для того, чтобы управлять как векторной, так и растровой информацией. Кроме того, появляется возможность работы с видео. Прибавьте аудиовозможности - и вы имеете компьютерную среду мультимедиа.

Все области применения - будь то искусство, инженерная и научная, бизнес/развлечения и - являются сферой применения КГ. Возрастающий потенциал ПК и их громадное число - обеспечивает устойчивый рост индустрии в данной отрасли.

Формирование общих понятий о компьютерной графике



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: